9. Specifying the parser to use¶
If you just need to parse some HTML, you can dump the markup into the
BeautifulSoup
constructor, and it’ll probably be fine. Beautiful
Soup will pick a parser for you and parse the data. But there are a
few additional arguments you can pass in to the constructor to change
which parser is used.
The first argument to the BeautifulSoup
constructor is a string or
an open filehandle–the markup you want parsed. The second argument is
how you’d like the markup parsed.
If you don’t specify anything, you’ll get the best HTML parser that’s installed. Beautiful Soup ranks lxml’s parser as being the best, then html5lib’s, then Python’s built-in parser. You can override this by specifying one of the following:
- What type of markup you want to parse. Currently supported are “html”, “xml”, and “html5”.
- The name of the parser library you want to use. Currently supported options are “lxml”, “html5lib”, and “html.parser” (Python’s built-in HTML parser).
The section Installing a parser contrasts the supported parsers.
If you don’t have an appropriate parser installed, Beautiful Soup will ignore your request and pick a different parser. Right now, the only supported XML parser is lxml. If you don’t have lxml installed, asking for an XML parser won’t give you one, and asking for “lxml” won’t work either.
9.1. Differences between parsers¶
Beautiful Soup presents the same interface to a number of different parsers, but each parser is different. Different parsers will create different parse trees from the same document. The biggest differences are between the HTML parsers and the XML parsers. Here’s a short document, parsed as HTML:
BeautifulSoup("<a><b /></a>")
# <html><head></head><body><a><b></b></a></body></html>
Since an empty <b /> tag is not valid HTML, the parser turns it into a <b></b> tag pair.
Here’s the same document parsed as XML (running this requires that you have lxml installed). Note that the empty <b /> tag is left alone, and that the document is given an XML declaration instead of being put into an <html> tag.:
BeautifulSoup("<a><b /></a>", "xml")
# <?xml version="1.0" encoding="utf-8"?>
# <a><b/></a>
There are also differences between HTML parsers. If you give Beautiful Soup a perfectly-formed HTML document, these differences won’t matter. One parser will be faster than another, but they’ll all give you a data structure that looks exactly like the original HTML document.
But if the document is not perfectly-formed, different parsers will give different results. Here’s a short, invalid document parsed using lxml’s HTML parser. Note that the dangling </p> tag is simply ignored:
BeautifulSoup("<a></p>", "lxml")
# <html><body><a></a></body></html>
Here’s the same document parsed using html5lib:
BeautifulSoup("<a></p>", "html5lib")
# <html><head></head><body><a><p></p></a></body></html>
Instead of ignoring the dangling </p> tag, html5lib pairs it with an opening <p> tag. This parser also adds an empty <head> tag to the document.
Here’s the same document parsed with Python’s built-in HTML parser:
BeautifulSoup("<a></p>", "html.parser")
# <a></a>
Like html5lib, this parser ignores the closing </p> tag. Unlike html5lib, this parser makes no attempt to create a well-formed HTML document by adding a <body> tag. Unlike lxml, it doesn’t even bother to add an <html> tag.
Since the document “<a></p>” is invalid, none of these techniques is the “correct” way to handle it. The html5lib parser uses techniques that are part of the HTML5 standard, so it has the best claim on being the “correct” way, but all three techniques are legitimate.
Differences between parsers can affect your script. If you’re planning
on distributing your script to other people, or running it on multiple
machines, you should specify a parser in the BeautifulSoup
constructor. That will reduce the chances that your users parse a
document differently from the way you parse it.