11.1.6.3.1. numpy.memmap

class numpy.memmap[source]

Create a memory-map to an array stored in a binary file on disk.

Memory-mapped files are used for accessing small segments of large files on disk, without reading the entire file into memory. Numpy’s memmap’s are array-like objects. This differs from Python’s mmap module, which uses file-like objects.

This subclass of ndarray has some unpleasant interactions with some operations, because it doesn’t quite fit properly as a subclass. An alternative to using this subclass is to create the mmap object yourself, then create an ndarray with ndarray.__new__ directly, passing the object created in its ‘buffer=’ parameter.

This class may at some point be turned into a factory function which returns a view into an mmap buffer.

Delete the memmap instance to close.

Parameters:

filename : str or file-like object

The file name or file object to be used as the array data buffer.

dtype : data-type, optional

The data-type used to interpret the file contents. Default is uint8.

mode : {‘r+’, ‘r’, ‘w+’, ‘c’}, optional

The file is opened in this mode:

‘r’ Open existing file for reading only.
‘r+’ Open existing file for reading and writing.
‘w+’ Create or overwrite existing file for reading and writing.
‘c’ Copy-on-write: assignments affect data in memory, but changes are not saved to disk. The file on disk is read-only.

Default is ‘r+’.

offset : int, optional

In the file, array data starts at this offset. Since offset is measured in bytes, it should normally be a multiple of the byte-size of dtype. When mode != 'r', even positive offsets beyond end of file are valid; The file will be extended to accommodate the additional data. By default, memmap will start at the beginning of the file, even if filename is a file pointer fp and fp.tell() != 0.

shape : tuple, optional

The desired shape of the array. If mode == 'r' and the number of remaining bytes after offset is not a multiple of the byte-size of dtype, you must specify shape. By default, the returned array will be 1-D with the number of elements determined by file size and data-type.

order : {‘C’, ‘F’}, optional

Specify the order of the ndarray memory layout: row-major, C-style or column-major, Fortran-style. This only has an effect if the shape is greater than 1-D. The default order is ‘C’.

Notes

The memmap object can be used anywhere an ndarray is accepted. Given a memmap fp, isinstance(fp, numpy.ndarray) returns True.

Memory-mapped arrays use the Python memory-map object which (prior to Python 2.5) does not allow files to be larger than a certain size depending on the platform. This size is always < 2GB even on 64-bit systems.

When a memmap causes a file to be created or extended beyond its current size in the filesystem, the contents of the new part are unspecified. On systems with POSIX filesystem semantics, the extended part will be filled with zero bytes.

Examples

>>> data = np.arange(12, dtype='float32')
>>> data.resize((3,4))

This example uses a temporary file so that doctest doesn’t write files to your directory. You would use a ‘normal’ filename.

>>> from tempfile import mkdtemp
>>> import os.path as path
>>> filename = path.join(mkdtemp(), 'newfile.dat')

Create a memmap with dtype and shape that matches our data:

>>> fp = np.memmap(filename, dtype='float32', mode='w+', shape=(3,4))
>>> fp
memmap([[ 0.,  0.,  0.,  0.],
        [ 0.,  0.,  0.,  0.],
        [ 0.,  0.,  0.,  0.]], dtype=float32)

Write data to memmap array:

>>> fp[:] = data[:]
>>> fp
memmap([[  0.,   1.,   2.,   3.],
        [  4.,   5.,   6.,   7.],
        [  8.,   9.,  10.,  11.]], dtype=float32)
>>> fp.filename == path.abspath(filename)
True

Deletion flushes memory changes to disk before removing the object:

>>> del fp

Load the memmap and verify data was stored:

>>> newfp = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
>>> newfp
memmap([[  0.,   1.,   2.,   3.],
        [  4.,   5.,   6.,   7.],
        [  8.,   9.,  10.,  11.]], dtype=float32)

Read-only memmap:

>>> fpr = np.memmap(filename, dtype='float32', mode='r', shape=(3,4))
>>> fpr.flags.writeable
False

Copy-on-write memmap:

>>> fpc = np.memmap(filename, dtype='float32', mode='c', shape=(3,4))
>>> fpc.flags.writeable
True

It’s possible to assign to copy-on-write array, but values are only written into the memory copy of the array, and not written to disk:

>>> fpc
memmap([[  0.,   1.,   2.,   3.],
        [  4.,   5.,   6.,   7.],
        [  8.,   9.,  10.,  11.]], dtype=float32)
>>> fpc[0,:] = 0
>>> fpc
memmap([[  0.,   0.,   0.,   0.],
        [  4.,   5.,   6.,   7.],
        [  8.,   9.,  10.,  11.]], dtype=float32)

File on disk is unchanged:

>>> fpr
memmap([[  0.,   1.,   2.,   3.],
        [  4.,   5.,   6.,   7.],
        [  8.,   9.,  10.,  11.]], dtype=float32)

Offset into a memmap:

>>> fpo = np.memmap(filename, dtype='float32', mode='r', offset=16)
>>> fpo
memmap([  4.,   5.,   6.,   7.,   8.,   9.,  10.,  11.], dtype=float32)

Attributes

filename (str) Path to the mapped file.
offset (int) Offset position in the file.
mode (str) File mode.

Methods

flush() Write any changes in the array to the file on disk.
__init__()

x.__init__(...) initializes x; see help(type(x)) for signature

Methods

all([axis, out, keepdims]) Returns True if all elements evaluate to True.
any([axis, out, keepdims]) Returns True if any of the elements of a evaluate to True.
argmax([axis, out]) Return indices of the maximum values along the given axis.
argmin([axis, out]) Return indices of the minimum values along the given axis of a.
argpartition(kth[, axis, kind, order]) Returns the indices that would partition this array.
argsort([axis, kind, order]) Returns the indices that would sort this array.
astype(dtype[, order, casting, subok, copy]) Copy of the array, cast to a specified type.
byteswap(inplace) Swap the bytes of the array elements
choose(choices[, out, mode]) Use an index array to construct a new array from a set of choices.
clip([min, max, out]) Return an array whose values are limited to [min, max].
compress(condition[, axis, out]) Return selected slices of this array along given axis.
conj() Complex-conjugate all elements.
conjugate() Return the complex conjugate, element-wise.
copy([order]) Return a copy of the array.
cumprod([axis, dtype, out]) Return the cumulative product of the elements along the given axis.
cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the given axis.
diagonal([offset, axis1, axis2]) Return specified diagonals.
dot(b[, out]) Dot product of two arrays.
dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
fill(value) Fill the array with a scalar value.
flatten([order]) Return a copy of the array collapsed into one dimension.
flush() Write any changes in the array to the file on disk.
getfield(dtype[, offset]) Returns a field of the given array as a certain type.
item(*args) Copy an element of an array to a standard Python scalar and return it.
itemset(*args) Insert scalar into an array (scalar is cast to array’s dtype, if possible)
max([axis, out]) Return the maximum along a given axis.
mean([axis, dtype, out, keepdims]) Returns the average of the array elements along given axis.
min([axis, out, keepdims]) Return the minimum along a given axis.
newbyteorder([new_order]) Return the array with the same data viewed with a different byte order.
nonzero() Return the indices of the elements that are non-zero.
partition(kth[, axis, kind, order]) Rearranges the elements in the array in such a way that value of the element in kth position is in the position it would be in a sorted array.
prod([axis, dtype, out, keepdims]) Return the product of the array elements over the given axis
ptp([axis, out]) Peak to peak (maximum - minimum) value along a given axis.
put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ravel([order]) Return a flattened array.
repeat(repeats[, axis]) Repeat elements of an array.
reshape(shape[, order]) Returns an array containing the same data with a new shape.
resize(new_shape[, refcheck]) Change shape and size of array in-place.
round([decimals, out]) Return a with each element rounded to the given number of decimals.
searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in a to maintain order.
setfield(val, dtype[, offset]) Put a value into a specified place in a field defined by a data-type.
setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.
sort([axis, kind, order]) Sort an array, in-place.
squeeze([axis]) Remove single-dimensional entries from the shape of a.
std([axis, dtype, out, ddof, keepdims]) Returns the standard deviation of the array elements along given axis.
sum([axis, dtype, out, keepdims]) Return the sum of the array elements over the given axis.
swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 interchanged.
take(indices[, axis, out, mode]) Return an array formed from the elements of a at the given indices.
tobytes([order]) Construct Python bytes containing the raw data bytes in the array.
tofile(fid[, sep, format]) Write array to a file as text or binary (default).
tolist() Return the array as a (possibly nested) list.
tostring([order]) Construct Python bytes containing the raw data bytes in the array.
trace([offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.
transpose(*axes) Returns a view of the array with axes transposed.
var([axis, dtype, out, ddof, keepdims]) Returns the variance of the array elements, along given axis.
view([dtype, type]) New view of array with the same data.

Attributes

T Same as self.transpose(), except that self is returned if self.ndim < 2.
base Base object if memory is from some other object.
ctypes An object to simplify the interaction of the array with the ctypes module.
data Python buffer object pointing to the start of the array’s data.
dtype Data-type of the array’s elements.
flags Information about the memory layout of the array.
flat A 1-D iterator over the array.
imag The imaginary part of the array.
itemsize Length of one array element in bytes.
nbytes Total bytes consumed by the elements of the array.
ndim Number of array dimensions.
real The real part of the array.
shape Tuple of array dimensions.
size Number of elements in the array.
strides Tuple of bytes to step in each dimension when traversing an array.