.. currentmodule:: pandas .. _sparse: .. ipython:: python :suppress: import numpy as np np.random.seed(123456) import pandas as pd import pandas.util.testing as tm np.set_printoptions(precision=4, suppress=True) pd.options.display.max_rows=8 >>> import numpy as np >>> np.random.seed(123456) >>> import pandas as pd >>> import pandas.util.testing as tm >>> np.set_printoptions(precision=4, suppress=True) >>> pd.options.display.max_rows=8 ********************** Sparse data structures ********************** .. note:: The ``SparsePanel`` class has been removed in 0.19.0 We have implemented "sparse" versions of Series and DataFrame. These are not sparse in the typical "mostly 0". Rather, you can view these objects as being "compressed" where any data matching a specific value (``NaN`` / missing value, though any value can be chosen) is omitted. A special ``SparseIndex`` object tracks where data has been "sparsified". This will make much more sense in an example. All of the standard pandas data structures have a ``to_sparse`` method: .. ipython:: python from numpy.random import randn ts = pd.Series(randn(10)) ts[2:-2] = np.nan sts = ts.to_sparse() sts The ``to_sparse`` method takes a ``kind`` argument (for the sparse index, see below) and a ``fill_value``. So if we had a mostly zero Series, we could convert it to sparse with ``fill_value=0``: .. ipython:: python ts.fillna(0).to_sparse(fill_value=0) The sparse objects exist for memory efficiency reasons. Suppose you had a large, mostly NA DataFrame: .. ipython:: python df = pd.DataFrame(randn(10000, 4)) df.ix[:9998] = np.nan sdf = df.to_sparse() sdf sdf.density As you can see, the density (% of values that have not been "compressed") is extremely low. This sparse object takes up much less memory on disk (pickled) and in the Python interpreter. Functionally, their behavior should be nearly identical to their dense counterparts. Any sparse object can be converted back to the standard dense form by calling ``to_dense``: .. ipython:: python sts.to_dense() .. _sparse.array: SparseArray ----------- ``SparseArray`` is the base layer for all of the sparse indexed data structures. It is a 1-dimensional ndarray-like object storing only values distinct from the ``fill_value``: .. ipython:: python arr = np.random.randn(10) arr[2:5] = np.nan; arr[7:8] = np.nan sparr = pd.SparseArray(arr) sparr Like the indexed objects (SparseSeries, SparseDataFrame), a ``SparseArray`` can be converted back to a regular ndarray by calling ``to_dense``: .. ipython:: python sparr.to_dense() .. _sparse.list: SparseList ---------- .. note:: The ``SparseList`` class has been deprecated and will be removed in a future version. ``SparseList`` is a list-like data structure for managing a dynamic collection of SparseArrays. To create one, simply call the ``SparseList`` constructor with a ``fill_value`` (defaulting to ``NaN``): .. ipython:: python spl = pd.SparseList() spl The two important methods are ``append`` and ``to_array``. ``append`` can accept scalar values or any 1-dimensional sequence: .. ipython:: python :suppress: .. ipython:: python spl.append(np.array([1., np.nan, np.nan, 2., 3.])) spl.append(5) spl.append(sparr) spl As you can see, all of the contents are stored internally as a list of memory-efficient ``SparseArray`` objects. Once you've accumulated all of the data, you can call ``to_array`` to get a single ``SparseArray`` with all the data: .. ipython:: python spl.to_array() SparseIndex objects ------------------- Two kinds of ``SparseIndex`` are implemented, ``block`` and ``integer``. We recommend using ``block`` as it's more memory efficient. The ``integer`` format keeps an arrays of all of the locations where the data are not equal to the fill value. The ``block`` format tracks only the locations and sizes of blocks of data. .. _sparse.calculation: Sparse Calculation ------------------ You can apply NumPy *ufuncs* to ``SparseArray`` and get a ``SparseArray`` as a result. .. ipython:: python arr = pd.SparseArray([1., np.nan, np.nan, -2., np.nan]) np.abs(arr) The *ufunc* is also applied to ``fill_value``. This is needed to get the correct dense result. .. ipython:: python arr = pd.SparseArray([1., -1, -1, -2., -1], fill_value=-1) np.abs(arr) np.abs(arr).to_dense() .. _sparse.scipysparse: Interaction with scipy.sparse ----------------------------- Experimental api to transform between sparse pandas and scipy.sparse structures. A :meth:`SparseSeries.to_coo` method is implemented for transforming a ``SparseSeries`` indexed by a ``MultiIndex`` to a ``scipy.sparse.coo_matrix``. The method requires a ``MultiIndex`` with two or more levels. .. ipython:: python :suppress: .. ipython:: python s = pd.Series([3.0, np.nan, 1.0, 3.0, np.nan, np.nan]) s.index = pd.MultiIndex.from_tuples([(1, 2, 'a', 0), (1, 2, 'a', 1), (1, 1, 'b', 0), (1, 1, 'b', 1), (2, 1, 'b', 0), (2, 1, 'b', 1)], names=['A', 'B', 'C', 'D']) s # SparseSeries ss = s.to_sparse() ss In the example below, we transform the ``SparseSeries`` to a sparse representation of a 2-d array by specifying that the first and second ``MultiIndex`` levels define labels for the rows and the third and fourth levels define labels for the columns. We also specify that the column and row labels should be sorted in the final sparse representation. .. ipython:: python A, rows, columns = ss.to_coo(row_levels=['A', 'B'], column_levels=['C', 'D'], sort_labels=True) A A.todense() rows columns Specifying different row and column labels (and not sorting them) yields a different sparse matrix: .. ipython:: python A, rows, columns = ss.to_coo(row_levels=['A', 'B', 'C'], column_levels=['D'], sort_labels=False) A A.todense() rows columns A convenience method :meth:`SparseSeries.from_coo` is implemented for creating a ``SparseSeries`` from a ``scipy.sparse.coo_matrix``. .. ipython:: python :suppress: .. ipython:: python from scipy import sparse A = sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), shape=(3, 4)) A A.todense() The default behaviour (with ``dense_index=False``) simply returns a ``SparseSeries`` containing only the non-null entries. .. ipython:: python ss = pd.SparseSeries.from_coo(A) ss Specifying ``dense_index=True`` will result in an index that is the Cartesian product of the row and columns coordinates of the matrix. Note that this will consume a significant amount of memory (relative to ``dense_index=False``) if the sparse matrix is large (and sparse) enough. .. ipython:: python ss_dense = pd.SparseSeries.from_coo(A, dense_index=True) ss_dense