2.6. Objects

2.6.1. What is a class?

A class is the particular object type created by executing a class statement. Class objects are used as templates to create instance objects, which embody both the data (attributes) and code (methods) specific to a datatype.

A class can be based on one or more other classes, called its base class(es). It then inherits the attributes and methods of its base classes. This allows an object model to be successively refined by inheritance. You might have a generic Mailbox class that provides basic accessor methods for a mailbox, and subclasses such as MboxMailbox, MaildirMailbox, OutlookMailbox that handle various specific mailbox formats.

2.6.2. What is a method?

A method is a function on some object x that you normally call as x.name(arguments...). Methods are defined as functions inside the class definition:

class C:
    def meth(self, arg):
        return arg * 2 + self.attribute

2.6.3. What is self?

Self is merely a conventional name for the first argument of a method. A method defined as meth(self, a, b, c) should be called as x.meth(a, b, c) for some instance x of the class in which the definition occurs; the called method will think it is called as meth(x, a, b, c).

See also Why must ‘self’ be used explicitly in method definitions and calls?.

2.6.4. How do I check if an object is an instance of a given class or of a subclass of it?

Use the built-in function isinstance(obj, cls). You can check if an object is an instance of any of a number of classes by providing a tuple instead of a single class, e.g. isinstance(obj, (class1, class2, ...)), and can also check whether an object is one of Python’s built-in types, e.g. isinstance(obj, str) or isinstance(obj, (int, long, float, complex)).

Note that most programs do not use isinstance() on user-defined classes very often. If you are developing the classes yourself, a more proper object-oriented style is to define methods on the classes that encapsulate a particular behaviour, instead of checking the object’s class and doing a different thing based on what class it is. For example, if you have a function that does something:

def search(obj):
    if isinstance(obj, Mailbox):
        ...  # code to search a mailbox
    elif isinstance(obj, Document):
        ...  # code to search a document
    elif ...

A better approach is to define a search() method on all the classes and just call it:

class Mailbox:
    def search(self):
        ...  # code to search a mailbox

class Document:
    def search(self):
        ...  # code to search a document

obj.search()

2.6.5. What is delegation?

Delegation is an object oriented technique (also called a design pattern). Let’s say you have an object x and want to change the behaviour of just one of its methods. You can create a new class that provides a new implementation of the method you’re interested in changing and delegates all other methods to the corresponding method of x.

Python programmers can easily implement delegation. For example, the following class implements a class that behaves like a file but converts all written data to uppercase:

class UpperOut:

    def __init__(self, outfile):
        self._outfile = outfile

    def write(self, s):
        self._outfile.write(s.upper())

    def __getattr__(self, name):
        return getattr(self._outfile, name)

Here the UpperOut class redefines the write() method to convert the argument string to uppercase before calling the underlying self.__outfile.write() method. All other methods are delegated to the underlying self.__outfile object. The delegation is accomplished via the __getattr__ method; consult the language reference for more information about controlling attribute access.

Note that for more general cases delegation can get trickier. When attributes must be set as well as retrieved, the class must define a __setattr__() method too, and it must do so carefully. The basic implementation of __setattr__() is roughly equivalent to the following:

class X:
    ...
    def __setattr__(self, name, value):
        self.__dict__[name] = value
    ...

Most __setattr__() implementations must modify self.__dict__ to store local state for self without causing an infinite recursion.

2.6.6. How do I call a method defined in a base class from a derived class that overrides it?

If you’re using new-style classes, use the built-in super() function:

class Derived(Base):
    def meth(self):
        super(Derived, self).meth()

If you’re using classic classes: For a class definition such as class Derived(Base): ... you can call method meth() defined in Base (or one of Base‘s base classes) as Base.meth(self, arguments...). Here, Base.meth is an unbound method, so you need to provide the self argument.

2.6.7. How can I organize my code to make it easier to change the base class?

You could define an alias for the base class, assign the real base class to it before your class definition, and use the alias throughout your class. Then all you have to change is the value assigned to the alias. Incidentally, this trick is also handy if you want to decide dynamically (e.g. depending on availability of resources) which base class to use. Example:

BaseAlias = <real base class>

class Derived(BaseAlias):
    def meth(self):
        BaseAlias.meth(self)
        ...

2.6.8. How do I create static class data and static class methods?

Both static data and static methods (in the sense of C++ or Java) are supported in Python.

For static data, simply define a class attribute. To assign a new value to the attribute, you have to explicitly use the class name in the assignment:

class C:
    count = 0   # number of times C.__init__ called

    def __init__(self):
        C.count = C.count + 1

    def getcount(self):
        return C.count  # or return self.count

c.count also refers to C.count for any c such that isinstance(c, C) holds, unless overridden by c itself or by some class on the base-class search path from c.__class__ back to C.

Caution: within a method of C, an assignment like self.count = 42 creates a new and unrelated instance named “count” in self‘s own dict. Rebinding of a class-static data name must always specify the class whether inside a method or not:

C.count = 314

Static methods are possible since Python 2.2:

class C:
    def static(arg1, arg2, arg3):
        # No 'self' parameter!
        ...
    static = staticmethod(static)

With Python 2.4’s decorators, this can also be written as

class C:
    @staticmethod
    def static(arg1, arg2, arg3):
        # No 'self' parameter!
        ...

However, a far more straightforward way to get the effect of a static method is via a simple module-level function:

def getcount():
    return C.count

If your code is structured so as to define one class (or tightly related class hierarchy) per module, this supplies the desired encapsulation.

2.6.9. How can I overload constructors (or methods) in Python?

This answer actually applies to all methods, but the question usually comes up first in the context of constructors.

In C++ you’d write

class C {
    C() { cout << "No arguments\n"; }
    C(int i) { cout << "Argument is " << i << "\n"; }
}

In Python you have to write a single constructor that catches all cases using default arguments. For example:

class C:
    def __init__(self, i=None):
        if i is None:
            print "No arguments"
        else:
            print "Argument is", i

This is not entirely equivalent, but close enough in practice.

You could also try a variable-length argument list, e.g.

def __init__(self, *args):
    ...

The same approach works for all method definitions.

2.6.10. I try to use __spam and I get an error about _SomeClassName__spam.

Variable names with double leading underscores are “mangled” to provide a simple but effective way to define class private variables. Any identifier of the form __spam (at least two leading underscores, at most one trailing underscore) is textually replaced with _classname__spam, where classname is the current class name with any leading underscores stripped.

This doesn’t guarantee privacy: an outside user can still deliberately access the “_classname__spam” attribute, and private values are visible in the object’s __dict__. Many Python programmers never bother to use private variable names at all.

2.6.11. My class defines __del__ but it is not called when I delete the object.

There are several possible reasons for this.

The del statement does not necessarily call __del__() – it simply decrements the object’s reference count, and if this reaches zero __del__() is called.

If your data structures contain circular links (e.g. a tree where each child has a parent reference and each parent has a list of children) the reference counts will never go back to zero. Once in a while Python runs an algorithm to detect such cycles, but the garbage collector might run some time after the last reference to your data structure vanishes, so your __del__() method may be called at an inconvenient and random time. This is inconvenient if you’re trying to reproduce a problem. Worse, the order in which object’s __del__() methods are executed is arbitrary. You can run gc.collect() to force a collection, but there are pathological cases where objects will never be collected.

Despite the cycle collector, it’s still a good idea to define an explicit close() method on objects to be called whenever you’re done with them. The close() method can then remove attributes that refer to subobjecs. Don’t call __del__() directly – __del__() should call close() and close() should make sure that it can be called more than once for the same object.

Another way to avoid cyclical references is to use the weakref module, which allows you to point to objects without incrementing their reference count. Tree data structures, for instance, should use weak references for their parent and sibling references (if they need them!).

If the object has ever been a local variable in a function that caught an expression in an except clause, chances are that a reference to the object still exists in that function’s stack frame as contained in the stack trace. Normally, calling sys.exc_clear() will take care of this by clearing the last recorded exception.

Finally, if your __del__() method raises an exception, a warning message is printed to sys.stderr.

2.6.12. How do I get a list of all instances of a given class?

Python does not keep track of all instances of a class (or of a built-in type). You can program the class’s constructor to keep track of all instances by keeping a list of weak references to each instance.

2.6.13. Why does the result of id() appear to be not unique?

The id() builtin returns an integer that is guaranteed to be unique during the lifetime of the object. Since in CPython, this is the object’s memory address, it happens frequently that after an object is deleted from memory, the next freshly created object is allocated at the same position in memory. This is illustrated by this example:

>>> id(1000)
13901272
>>> id(2000)
13901272

The two ids belong to different integer objects that are created before, and deleted immediately after execution of the id() call. To be sure that objects whose id you want to examine are still alive, create another reference to the object:

>>> a = 1000; b = 2000
>>> id(a)
13901272
>>> id(b)
13891296