Source code for _abcoll

# Copyright 2007 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Abstract Base Classes (ABCs) for collections, according to PEP 3119.

DON'T USE THIS MODULE DIRECTLY!  The classes here should be imported
via collections; they are defined here only to alleviate certain
bootstrapping issues.  Unit tests are in test_collections.
"""

from abc import ABCMeta, abstractmethod
import sys

__all__ = ["Hashable", "Iterable", "Iterator",
           "Sized", "Container", "Callable",
           "Set", "MutableSet",
           "Mapping", "MutableMapping",
           "MappingView", "KeysView", "ItemsView", "ValuesView",
           "Sequence", "MutableSequence",
           ]

### ONE-TRICK PONIES ###

def _hasattr(C, attr):
    try:
        return any(attr in B.__dict__ for B in C.__mro__)
    except AttributeError:
        # Old-style class
        return hasattr(C, attr)


[docs]class Hashable: __metaclass__ = ABCMeta @abstractmethod def __hash__(self): return 0 @classmethod def __subclasshook__(cls, C): if cls is Hashable: try: for B in C.__mro__: if "__hash__" in B.__dict__: if B.__dict__["__hash__"]: return True break except AttributeError: # Old-style class if getattr(C, "__hash__", None): return True return NotImplemented
[docs]class Iterable: __metaclass__ = ABCMeta @abstractmethod def __iter__(self): while False: yield None @classmethod def __subclasshook__(cls, C): if cls is Iterable: if _hasattr(C, "__iter__"): return True return NotImplemented
Iterable.register(str)
[docs]class Iterator(Iterable): @abstractmethod
[docs] def next(self): 'Return the next item from the iterator. When exhausted, raise StopIteration' raise StopIteration
[docs] def __iter__(self): return self
@classmethod
[docs] def __subclasshook__(cls, C): if cls is Iterator: if _hasattr(C, "next") and _hasattr(C, "__iter__"): return True return NotImplemented
[docs]class Sized: __metaclass__ = ABCMeta @abstractmethod def __len__(self): return 0 @classmethod def __subclasshook__(cls, C): if cls is Sized: if _hasattr(C, "__len__"): return True return NotImplemented
[docs]class Container: __metaclass__ = ABCMeta @abstractmethod def __contains__(self, x): return False @classmethod def __subclasshook__(cls, C): if cls is Container: if _hasattr(C, "__contains__"): return True return NotImplemented
[docs]class Callable: __metaclass__ = ABCMeta @abstractmethod def __call__(self, *args, **kwds): return False @classmethod def __subclasshook__(cls, C): if cls is Callable: if _hasattr(C, "__call__"): return True return NotImplemented
### SETS ###
[docs]class Set(Sized, Iterable, Container): """A set is a finite, iterable container. This class provides concrete generic implementations of all methods except for __contains__, __iter__ and __len__. To override the comparisons (presumably for speed, as the semantics are fixed), redefine __le__ and __ge__, then the other operations will automatically follow suit. """
[docs] def __le__(self, other): if not isinstance(other, Set): return NotImplemented if len(self) > len(other): return False for elem in self: if elem not in other: return False return True
[docs] def __lt__(self, other): if not isinstance(other, Set): return NotImplemented return len(self) < len(other) and self.__le__(other)
[docs] def __gt__(self, other): if not isinstance(other, Set): return NotImplemented return len(self) > len(other) and self.__ge__(other)
[docs] def __ge__(self, other): if not isinstance(other, Set): return NotImplemented if len(self) < len(other): return False for elem in other: if elem not in self: return False return True
[docs] def __eq__(self, other): if not isinstance(other, Set): return NotImplemented return len(self) == len(other) and self.__le__(other)
[docs] def __ne__(self, other): return not (self == other)
@classmethod
[docs] def _from_iterable(cls, it): '''Construct an instance of the class from any iterable input. Must override this method if the class constructor signature does not accept an iterable for an input. ''' return cls(it)
[docs] def __and__(self, other): if not isinstance(other, Iterable): return NotImplemented return self._from_iterable(value for value in other if value in self)
__rand__ = __and__
[docs] def isdisjoint(self, other): 'Return True if two sets have a null intersection.' for value in other: if value in self: return False return True
[docs] def __or__(self, other): if not isinstance(other, Iterable): return NotImplemented chain = (e for s in (self, other) for e in s) return self._from_iterable(chain)
__ror__ = __or__
[docs] def __sub__(self, other): if not isinstance(other, Set): if not isinstance(other, Iterable): return NotImplemented other = self._from_iterable(other) return self._from_iterable(value for value in self if value not in other)
[docs] def __rsub__(self, other): if not isinstance(other, Set): if not isinstance(other, Iterable): return NotImplemented other = self._from_iterable(other) return self._from_iterable(value for value in other if value not in self)
[docs] def __xor__(self, other): if not isinstance(other, Set): if not isinstance(other, Iterable): return NotImplemented other = self._from_iterable(other) return (self - other) | (other - self)
__rxor__ = __xor__ # Sets are not hashable by default, but subclasses can change this __hash__ = None
[docs] def _hash(self): """Compute the hash value of a set. Note that we don't define __hash__: not all sets are hashable. But if you define a hashable set type, its __hash__ should call this function. This must be compatible __eq__. All sets ought to compare equal if they contain the same elements, regardless of how they are implemented, and regardless of the order of the elements; so there's not much freedom for __eq__ or __hash__. We match the algorithm used by the built-in frozenset type. """ MAX = sys.maxint MASK = 2 * MAX + 1 n = len(self) h = 1927868237 * (n + 1) h &= MASK for x in self: hx = hash(x) h ^= (hx ^ (hx << 16) ^ 89869747) * 3644798167 h &= MASK h = h * 69069 + 907133923 h &= MASK if h > MAX: h -= MASK + 1 if h == -1: h = 590923713 return h
Set.register(frozenset)
[docs]class MutableSet(Set): """A mutable set is a finite, iterable container. This class provides concrete generic implementations of all methods except for __contains__, __iter__, __len__, add(), and discard(). To override the comparisons (presumably for speed, as the semantics are fixed), all you have to do is redefine __le__ and then the other operations will automatically follow suit. """ @abstractmethod
[docs] def add(self, value): """Add an element.""" raise NotImplementedError
@abstractmethod
[docs] def discard(self, value): """Remove an element. Do not raise an exception if absent.""" raise NotImplementedError
[docs] def remove(self, value): """Remove an element. If not a member, raise a KeyError.""" if value not in self: raise KeyError(value) self.discard(value)
[docs] def pop(self): """Return the popped value. Raise KeyError if empty.""" it = iter(self) try: value = next(it) except StopIteration: raise KeyError self.discard(value) return value
[docs] def clear(self): """This is slow (creates N new iterators!) but effective.""" try: while True: self.pop() except KeyError: pass
[docs] def __ior__(self, it): for value in it: self.add(value) return self
[docs] def __iand__(self, it): for value in (self - it): self.discard(value) return self
[docs] def __ixor__(self, it): if it is self: self.clear() else: if not isinstance(it, Set): it = self._from_iterable(it) for value in it: if value in self: self.discard(value) else: self.add(value) return self
[docs] def __isub__(self, it): if it is self: self.clear() else: for value in it: self.discard(value) return self
MutableSet.register(set) ### MAPPINGS ###
[docs]class Mapping(Sized, Iterable, Container): """A Mapping is a generic container for associating key/value pairs. This class provides concrete generic implementations of all methods except for __getitem__, __iter__, and __len__. """ @abstractmethod
[docs] def __getitem__(self, key): raise KeyError
[docs] def get(self, key, default=None): 'D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.' try: return self[key] except KeyError: return default
[docs] def __contains__(self, key): try: self[key] except KeyError: return False else: return True
[docs] def iterkeys(self): 'D.iterkeys() -> an iterator over the keys of D' return iter(self)
[docs] def itervalues(self): 'D.itervalues() -> an iterator over the values of D' for key in self: yield self[key]
[docs] def iteritems(self): 'D.iteritems() -> an iterator over the (key, value) items of D' for key in self: yield (key, self[key])
[docs] def keys(self): "D.keys() -> list of D's keys" return list(self)
[docs] def items(self): "D.items() -> list of D's (key, value) pairs, as 2-tuples" return [(key, self[key]) for key in self]
[docs] def values(self): "D.values() -> list of D's values" return [self[key] for key in self]
# Mappings are not hashable by default, but subclasses can change this __hash__ = None
[docs] def __eq__(self, other): if not isinstance(other, Mapping): return NotImplemented return dict(self.items()) == dict(other.items())
[docs] def __ne__(self, other): return not (self == other)
[docs]class MappingView(Sized):
[docs] def __init__(self, mapping): self._mapping = mapping
[docs] def __len__(self): return len(self._mapping)
[docs] def __repr__(self): return '{0.__class__.__name__}({0._mapping!r})'.format(self)
[docs]class KeysView(MappingView, Set): @classmethod
[docs] def _from_iterable(self, it): return set(it)
[docs] def __contains__(self, key): return key in self._mapping
[docs] def __iter__(self): for key in self._mapping: yield key
KeysView.register(type({}.viewkeys()))
[docs]class ItemsView(MappingView, Set): @classmethod
[docs] def _from_iterable(self, it): return set(it)
[docs] def __contains__(self, item): key, value = item try: v = self._mapping[key] except KeyError: return False else: return v == value
[docs] def __iter__(self): for key in self._mapping: yield (key, self._mapping[key])
ItemsView.register(type({}.viewitems()))
[docs]class ValuesView(MappingView):
[docs] def __contains__(self, value): for key in self._mapping: if value == self._mapping[key]: return True return False
[docs] def __iter__(self): for key in self._mapping: yield self._mapping[key]
ValuesView.register(type({}.viewvalues()))
[docs]class MutableMapping(Mapping): """A MutableMapping is a generic container for associating key/value pairs. This class provides concrete generic implementations of all methods except for __getitem__, __setitem__, __delitem__, __iter__, and __len__. """ @abstractmethod
[docs] def __setitem__(self, key, value): raise KeyError
@abstractmethod
[docs] def __delitem__(self, key): raise KeyError
__marker = object()
[docs] def pop(self, key, default=__marker): '''D.pop(k[,d]) -> v, remove specified key and return the corresponding value. If key is not found, d is returned if given, otherwise KeyError is raised. ''' try: value = self[key] except KeyError: if default is self.__marker: raise return default else: del self[key] return value
[docs] def popitem(self): '''D.popitem() -> (k, v), remove and return some (key, value) pair as a 2-tuple; but raise KeyError if D is empty. ''' try: key = next(iter(self)) except StopIteration: raise KeyError value = self[key] del self[key] return key, value
[docs] def clear(self): 'D.clear() -> None. Remove all items from D.' try: while True: self.popitem() except KeyError: pass
[docs] def update(*args, **kwds): ''' D.update([E, ]**F) -> None. Update D from mapping/iterable E and F. If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v ''' if not args: raise TypeError("descriptor 'update' of 'MutableMapping' object " "needs an argument") self = args[0] args = args[1:] if len(args) > 1: raise TypeError('update expected at most 1 arguments, got %d' % len(args)) if args: other = args[0] if isinstance(other, Mapping): for key in other: self[key] = other[key] elif hasattr(other, "keys"): for key in other.keys(): self[key] = other[key] else: for key, value in other: self[key] = value for key, value in kwds.items(): self[key] = value
[docs] def setdefault(self, key, default=None): 'D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D' try: return self[key] except KeyError: self[key] = default return default
MutableMapping.register(dict) ### SEQUENCES ###
[docs]class Sequence(Sized, Iterable, Container): """All the operations on a read-only sequence. Concrete subclasses must override __new__ or __init__, __getitem__, and __len__. """ @abstractmethod
[docs] def __getitem__(self, index): raise IndexError
[docs] def __iter__(self): i = 0 try: while True: v = self[i] yield v i += 1 except IndexError: return
[docs] def __contains__(self, value): for v in self: if v == value: return True return False
[docs] def __reversed__(self): for i in reversed(range(len(self))): yield self[i]
[docs] def index(self, value): '''S.index(value) -> integer -- return first index of value. Raises ValueError if the value is not present. ''' for i, v in enumerate(self): if v == value: return i raise ValueError
[docs] def count(self, value): 'S.count(value) -> integer -- return number of occurrences of value' return sum(1 for v in self if v == value)
Sequence.register(tuple) Sequence.register(basestring) Sequence.register(buffer) Sequence.register(xrange)
[docs]class MutableSequence(Sequence): """All the operations on a read-only sequence. Concrete subclasses must provide __new__ or __init__, __getitem__, __setitem__, __delitem__, __len__, and insert(). """ @abstractmethod
[docs] def __setitem__(self, index, value): raise IndexError
@abstractmethod
[docs] def __delitem__(self, index): raise IndexError
@abstractmethod
[docs] def insert(self, index, value): 'S.insert(index, object) -- insert object before index' raise IndexError
[docs] def append(self, value): 'S.append(object) -- append object to the end of the sequence' self.insert(len(self), value)
[docs] def reverse(self): 'S.reverse() -- reverse *IN PLACE*' n = len(self) for i in range(n//2): self[i], self[n-i-1] = self[n-i-1], self[i]
[docs] def extend(self, values): 'S.extend(iterable) -- extend sequence by appending elements from the iterable' for v in values: self.append(v)
[docs] def pop(self, index=-1): '''S.pop([index]) -> item -- remove and return item at index (default last). Raise IndexError if list is empty or index is out of range. ''' v = self[index] del self[index] return v
[docs] def remove(self, value): '''S.remove(value) -- remove first occurrence of value. Raise ValueError if the value is not present. ''' del self[self.index(value)]
[docs] def __iadd__(self, values): self.extend(values) return self
MutableSequence.register(list)