7.3.6.3. networkx.algorithms.bipartite.cluster.latapy_clustering¶
-
networkx.algorithms.bipartite.cluster.latapy_clustering(G, nodes=None, mode='dot')[source]¶ Compute a bipartite clustering coefficient for nodes.
The bipartie clustering coefficient is a measure of local density of connections defined as [R495]:
\[c_u = \frac{\sum_{v \in N(N(v))} c_{uv} }{|N(N(u))|}\]where N(N(u)) are the second order neighbors of u in G excluding u, and c_{uv} is the pairwise clustering coefficient between nodes u and v.
The mode selects the function for c_{uv} which can be:
dot:
\[c_{uv}=\frac{|N(u)\cap N(v)|}{|N(u) \cup N(v)|}\]min:
\[c_{uv}=\frac{|N(u)\cap N(v)|}{min(|N(u)|,|N(v)|)}\]max:
\[c_{uv}=\frac{|N(u)\cap N(v)|}{max(|N(u)|,|N(v)|)}\]Parameters: G : graph
A bipartite graph
nodes : list or iterable (optional)
Compute bipartite clustering for these nodes. The default is all nodes in G.
mode : string
The pariwise bipartite clustering method to be used in the computation. It must be “dot”, “max”, or “min”.
Returns: clustering : dictionary
A dictionary keyed by node with the clustering coefficient value.
See also
robins_alexander_clustering,square_clustering,average_clusteringReferences
[R495] (1, 2) Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008). Basic notions for the analysis of large two-mode networks. Social Networks 30(1), 31–48. Examples
>>> from networkx.algorithms import bipartite >>> G = nx.path_graph(4) # path graphs are bipartite >>> c = bipartite.clustering(G) >>> c[0] 0.5 >>> c = bipartite.clustering(G,mode='min') >>> c[0] 1.0