7.5.10.1. networkx.algorithms.centrality.harmonic_centrality¶
-
networkx.algorithms.centrality.harmonic_centrality(G, distance=None)[source]¶ Compute harmonic centrality for nodes.
Harmonic centrality [R539] of a node u is the sum of the reciprocal of the shortest path distances from all other nodes to u
\[C(u) = \sum_{v \neq u} \frac{1}{d(v, u)}\]where d(v, u) is the shortest-path distance between v and u.
Notice that higher values indicate higher centrality.
Parameters: G : graph
A NetworkX graph
distance : edge attribute key, optional (default=None)
Use the specified edge attribute as the edge distance in shortest path calculations. If None, then each edge will have distance equal to 1.
Returns: nodes : dictionary
Dictionary of nodes with harmonic centrality as the value.
See also
betweenness_centrality,load_centrality,eigenvector_centrality,degree_centrality,closeness_centralityNotes
If the ‘distance’ keyword is set to an edge attribute key then the shortest-path length will be computed using Dijkstra’s algorithm with that edge attribute as the edge weight.
References
[R539] (1, 2) Boldi, Paolo, and Sebastiano Vigna. “Axioms for centrality.” Internet Mathematics 10.3-4 (2014): 222-262.