LCF_graph(n, shift_list, repeats[, create_using]) |
Return the cubic graph specified in LCF notation. |
LFR_benchmark_graph(n, tau1, tau2, mu[, ...]) |
Returns the LFR benchmark graph for testing community-finding algorithms. |
adamic_adar_index(G[, ebunch]) |
Compute the Adamic-Adar index of all node pairs in ebunch. |
add_cycle(G, nodes, **attr) |
Add a cycle to the Graph G. |
add_path(G, nodes, **attr) |
Add a path to the Graph G. |
add_star(G, nodes, **attr) |
Add a star to Graph G. |
adj_matrix(G[, nodelist, weight]) |
Return adjacency matrix of G. |
adjacency_data(G[, attrs]) |
Return data in adjacency format that is suitable for JSON serialization and use in Javascript documents. |
adjacency_graph(data[, directed, ...]) |
Return graph from adjacency data format. |
adjacency_matrix(G[, nodelist, weight]) |
Return adjacency matrix of G. |
adjacency_spectrum(G[, weight]) |
Return eigenvalues of the adjacency matrix of G. |
algebraic_connectivity(G[, weight, ...]) |
Return the algebraic connectivity of an undirected graph. |
all_neighbors(graph, node) |
Returns all of the neighbors of a node in the graph. |
all_node_cuts(G[, k, flow_func]) |
Returns all minimum k cutsets of an undirected graph G. |
all_pairs_bellman_ford_path(G[, cutoff, weight]) |
Compute shortest paths between all nodes in a weighted graph. |
all_pairs_bellman_ford_path_length(G[, ...]) |
Compute shortest path lengths between all nodes in a weighted graph. |
all_pairs_dijkstra_path(G[, cutoff, weight]) |
Compute shortest paths between all nodes in a weighted graph. |
all_pairs_dijkstra_path_length(G[, cutoff, ...]) |
Compute shortest path lengths between all nodes in a weighted graph. |
all_pairs_node_connectivity(G[, nbunch, ...]) |
Compute node connectivity between all pairs of nodes of G. |
all_pairs_shortest_path(G[, cutoff]) |
Compute shortest paths between all nodes. |
all_pairs_shortest_path_length(G[, cutoff]) |
Computes the shortest path lengths between all nodes in G. |
all_shortest_paths(G, source, target[, weight]) |
Compute all shortest paths in the graph. |
all_simple_paths(G, source, target[, cutoff]) |
Generate all simple paths in the graph G from source to target. |
ancestors(G, source) |
Return all nodes having a path to source in G. |
antichains(G) |
Generates antichains from a DAG. |
approximate_current_flow_betweenness_centrality(G) |
Compute the approximate current-flow betweenness centrality for nodes. |
articulation_points(G) |
Return a generator of articulation points, or cut vertices, of a graph. |
astar_path(G, source, target[, heuristic, ...]) |
Return a list of nodes in a shortest path between source and target using the A* (“A-star”) algorithm. |
astar_path_length(G, source, target[, ...]) |
Return the length of the shortest path between source and target using the A* (“A-star”) algorithm. |
asyn_lpa_communities(G[, weight]) |
Returns communities in G as detected by asynchronous label propagation. |
attr_matrix(G[, edge_attr, node_attr, ...]) |
Returns a NumPy matrix using attributes from G. |
attr_sparse_matrix(G[, edge_attr, ...]) |
Returns a SciPy sparse matrix using attributes from G. |
attracting_component_subgraphs(G[, copy]) |
Generates a list of attracting component subgraphs from G. |
attracting_components(G) |
Generates a list of attracting components in G. |
attribute_assortativity_coefficient(G, attribute) |
Compute assortativity for node attributes. |
attribute_mixing_dict(G, attribute[, nodes, ...]) |
Return dictionary representation of mixing matrix for attribute. |
attribute_mixing_matrix(G, attribute[, ...]) |
Return mixing matrix for attribute. |
authority_matrix(G[, nodelist]) |
Return the HITS authority matrix. |
average_clustering(G[, nodes, weight, ...]) |
Compute the average clustering coefficient for the graph G. |
average_degree_connectivity(G[, source, ...]) |
Compute the average degree connectivity of graph. |
average_neighbor_degree(G[, source, target, ...]) |
Returns the average degree of the neighborhood of each node. |
average_node_connectivity(G[, flow_func]) |
Returns the average connectivity of a graph G. |
average_shortest_path_length(G[, weight]) |
Return the average shortest path length. |
balanced_tree(r, h[, create_using]) |
Return the perfectly balanced r-ary tree of height h. |
barabasi_albert_graph(n, m[, seed]) |
Returns a random graph according to the Barabási–Albert preferential attachment model. |
barbell_graph(m1, m2[, create_using]) |
Return the Barbell Graph: two complete graphs connected by a path. |
bellman_ford(G, source[, weight]) |
DEPRECATED: Has been replaced by function bellman_ford_predecessor_and_distance(). |
bellman_ford_path(G, source, target[, weight]) |
Returns the shortest path from source to target in a weighted graph G. |
bellman_ford_path_length(G, source, target) |
Returns the shortest path length from source to target in a weighted graph. |
bellman_ford_predecessor_and_distance(G, source) |
Compute shortest path lengths and predecessors on shortest paths in weighted graphs. |
betweenness_centrality(G[, k, normalized, ...]) |
Compute the shortest-path betweenness centrality for nodes. |
betweenness_centrality_source(G[, ...]) |
|
betweenness_centrality_subset(G, sources, ...) |
Compute betweenness centrality for a subset of nodes. |
bfs_edges(G, source[, reverse]) |
Produce edges in a breadth-first-search starting at source. |
bfs_predecessors(G, source) |
Returns an iterator of predecessors in breadth-first-search from source. |
bfs_successors(G, source) |
Returns an iterator of successors in breadth-first-search from source. |
bfs_tree(G, source[, reverse]) |
Return an oriented tree constructed from of a breadth-first-search starting at source. |
biconnected_component_edges(G) |
Return a generator of lists of edges, one list for each biconnected component of the input graph. |
biconnected_component_subgraphs(G[, copy]) |
Return a generator of graphs, one graph for each biconnected component of the input graph. |
biconnected_components(G) |
Return a generator of sets of nodes, one set for each biconnected |
bidirectional_dijkstra(G, source, target[, ...]) |
Dijkstra’s algorithm for shortest paths using bidirectional search. |
bidirectional_shortest_path(G, source, target) |
Return a list of nodes in a shortest path between source and target. |
binomial_graph(n, p[, seed, directed]) |
Returns a G_{n,p} random graph, also known as an Erdős-Rényi graph or a binomial graph. |
blockmodel(G, partition[, multigraph]) |
Returns a reduced graph constructed using the generalized block modeling technique. |
boundary_expansion(G, S) |
Returns the boundary expansion of the set S. |
bull_graph([create_using]) |
Return the Bull graph. |
capacity_scaling(G[, demand, capacity, ...]) |
Find a minimum cost flow satisfying all demands in digraph G. |
cartesian_product(G, H) |
Return the Cartesian product of G and H. |
caveman_graph(l, k) |
Returns a caveman graph of l cliques of size k. |
center(G[, e]) |
Return the center of the graph G. |
chordal_cycle_graph(p[, create_using]) |
Return the chordal cycle graph on p nodes. |
chordal_graph_cliques(G) |
Returns the set of maximal cliques of a chordal graph. |
chordal_graph_treewidth(G) |
Returns the treewidth of the chordal graph G. |
chvatal_graph([create_using]) |
Return the Chvátal graph. |
circulant_graph(n, offsets[, create_using]) |
Generates the circulant graph Ci_n(x_1, x_2, ..., x_m) with n vertices. |
circular_ladder_graph(n[, create_using]) |
Return the circular ladder graph CL_n of length n. |
circular_layout(G[, scale, center, dim]) |
Position nodes on a circle. |
cliques_containing_node(G[, nodes, cliques]) |
Returns a list of cliques containing the given node. |
closeness_centrality(G[, u, distance, ...]) |
Compute closeness centrality for nodes. |
closeness_vitality(G[, node, weight, ...]) |
Returns the closeness vitality for nodes in the graph. |
clustering(G[, nodes, weight]) |
Compute the clustering coefficient for nodes. |
cn_soundarajan_hopcroft(G[, ebunch, community]) |
Count the number of common neighbors of all node pairs in ebunch using community information. |
common_neighbors(G, u, v) |
Return the common neighbors of two nodes in a graph. |
communicability(G) |
Return communicability between all pairs of nodes in G. |
communicability_betweenness_centrality(G[, ...]) |
Return subgraph communicability for all pairs of nodes in G. |
communicability_exp(G) |
Return communicability between all pairs of nodes in G. |
complement(G[, name]) |
Return the graph complement of G. |
complete_bipartite_graph(n1, n2[, create_using]) |
Return the complete bipartite graph K_{n_1,n_2}. |
complete_graph(n[, create_using]) |
Return the complete graph K_n with n nodes. |
complete_multipartite_graph(*block_sizes) |
Returns the complete multipartite graph with the specified block sizes. |
compose(G, H[, name]) |
Return a new graph of G composed with H. |
compose_all(graphs[, name]) |
Return the composition of all graphs. |
condensation(G[, scc]) |
Returns the condensation of G. |
conductance(G, S[, T, weight]) |
Returns the conductance of two sets of nodes. |
configuration_model(deg_sequence[, ...]) |
Return a random graph with the given degree sequence. |
connected_caveman_graph(l, k) |
Returns a connected caveman graph of l cliques of size k. |
connected_component_subgraphs(G[, copy]) |
Generate connected components as subgraphs. |
connected_components(G) |
Generate connected components. |
connected_double_edge_swap(G[, nswap, ...]) |
Attempts the specified number of double-edge swaps in the graph G. |
connected_watts_strogatz_graph(n, k, p[, ...]) |
Returns a connected Watts–Strogatz small-world graph. |
contracted_edge(G, edge[, self_loops]) |
Returns the graph that results from contracting the specified edge. |
contracted_nodes(G, u, v[, self_loops]) |
Returns the graph that results from contracting u and v. |
convert_node_labels_to_integers(G[, ...]) |
Return a copy of the graph G with the nodes relabeled using consecutive integers. |
core_number(G) |
Return the core number for each vertex. |
cost_of_flow(G, flowDict[, weight]) |
Compute the cost of the flow given by flowDict on graph G. |
could_be_isomorphic(G1, G2) |
Returns False if graphs are definitely not isomorphic. |
coverage(*args, **kw) |
Returns the coverage of a partition. |
create_empty_copy(G[, with_data]) |
Return a copy of the graph G with all of the edges removed. |
cubical_graph([create_using]) |
Return the 3-regular Platonic Cubical graph. |
current_flow_betweenness_centrality(G[, ...]) |
Compute current-flow betweenness centrality for nodes. |
current_flow_betweenness_centrality_subset(G, ...) |
Compute current-flow betweenness centrality for subsets of nodes. |
current_flow_closeness_centrality(G[, ...]) |
Compute current-flow closeness centrality for nodes. |
cut_size(G, S[, T, weight]) |
Returns the size of the cut between two sets of nodes. |
cycle_basis(G[, root]) |
Returns a list of cycles which form a basis for cycles of G. |
cycle_graph(n[, create_using]) |
Return the cycle graph C_n of cyclicly connected nodes. |
dag_longest_path(G[, weight, default_weight]) |
Returns the longest path in a DAG If G has edges with ‘weight’ attribute the edge data are used as weight values. |
dag_longest_path_length(G) |
Returns the longest path length in a DAG |
davis_southern_women_graph() |
Return Davis Southern women social network. |
degree(G[, nbunch, weight]) |
Return degree of single node or of nbunch of nodes. |
degree_assortativity_coefficient(G[, x, y, ...]) |
Compute degree assortativity of graph. |
degree_centrality(G) |
Compute the degree centrality for nodes. |
degree_histogram(G) |
Return a list of the frequency of each degree value. |
degree_mixing_dict(G[, x, y, weight, nodes, ...]) |
Return dictionary representation of mixing matrix for degree. |
degree_mixing_matrix(G[, x, y, weight, ...]) |
Return mixing matrix for attribute. |
degree_pearson_correlation_coefficient(G[, ...]) |
Compute degree assortativity of graph. |
degree_sequence_tree(deg_sequence[, ...]) |
Make a tree for the given degree sequence. |
dense_gnm_random_graph(n, m[, seed]) |
Returns a G_{n,m} random graph. |
density(G) |
Return the density of a graph. |
desargues_graph([create_using]) |
Return the Desargues graph. |
descendants(G, source) |
Return all nodes reachable from source in G. |
dfs_edges(G[, source]) |
Produce edges in a depth-first-search (DFS). |
dfs_labeled_edges(G[, source]) |
Produce edges in a depth-first-search (DFS) labeled by type. |
dfs_postorder_nodes(G[, source]) |
Produce nodes in a depth-first-search post-ordering starting from source. |
dfs_predecessors(G[, source]) |
Return dictionary of predecessors in depth-first-search from source. |
dfs_preorder_nodes(G[, source]) |
Produce nodes in a depth-first-search pre-ordering starting from source. |
dfs_successors(G[, source]) |
Return dictionary of successors in depth-first-search from source. |
dfs_tree(G, source) |
Return oriented tree constructed from a depth-first-search from source. |
diameter(G[, e]) |
Return the diameter of the graph G. |
diamond_graph([create_using]) |
Return the Diamond graph. |
difference(G, H) |
Return a new graph that contains the edges that exist in G but not in H. |
dijkstra_path(G, source, target[, weight]) |
Returns the shortest weighted path from source to target in G. |
dijkstra_path_length(G, source, target[, weight]) |
Returns the shortest weighted path length in G from source to target. |
dijkstra_predecessor_and_distance(G, source) |
Compute weighted shortest path length and predecessors. |
directed_configuration_model(...[, ...]) |
Return a directed_random graph with the given degree sequences. |
directed_havel_hakimi_graph(in_deg_sequence, ...) |
Return a directed graph with the given degree sequences. |
directed_laplacian_matrix(G[, nodelist, ...]) |
Return the directed Laplacian matrix of G. |
directed_modularity_matrix(G[, nodelist, weight]) |
Return the directed modularity matrix of G. |
disjoint_union(G, H) |
Return the disjoint union of graphs G and H. |
disjoint_union_all(graphs) |
Return the disjoint union of all graphs. |
dispersion(G[, u, v, normalized, alpha, b, c]) |
Calculate dispersion between u and v in G. |
dodecahedral_graph([create_using]) |
Return the Platonic Dodecahedral graph. |
dominance_frontiers(G, start) |
Returns the dominance frontiers of all nodes of a directed graph. |
dominating_set(G[, start_with]) |
Finds a dominating set for the graph G. |
dorogovtsev_goltsev_mendes_graph(n[, ...]) |
Return the hierarchically constructed Dorogovtsev-Goltsev-Mendes graph. |
double_edge_swap(G[, nswap, max_tries]) |
Swap two edges in the graph while keeping the node degrees fixed. |
draw(G[, pos, ax, hold]) |
Draw the graph G with Matplotlib. |
draw_circular(G, **kwargs) |
Draw the graph G with a circular layout. |
draw_networkx(G[, pos, arrows, with_labels]) |
Draw the graph G using Matplotlib. |
draw_networkx_edge_labels(G, pos[, ...]) |
Draw edge labels. |
draw_networkx_edges(G, pos[, edgelist, ...]) |
Draw the edges of the graph G. |
draw_networkx_labels(G, pos[, labels, ...]) |
Draw node labels on the graph G. |
draw_networkx_nodes(G, pos[, nodelist, ...]) |
Draw the nodes of the graph G. |
draw_random(G, **kwargs) |
Draw the graph G with a random layout. |
draw_shell(G, **kwargs) |
Draw networkx graph with shell layout. |
draw_spectral(G, **kwargs) |
Draw the graph G with a spectral layout. |
draw_spring(G, **kwargs) |
Draw the graph G with a spring layout. |
duplication_divergence_graph(n, p[, seed]) |
Returns an undirected graph using the duplication-divergence model. |
eccentricity(G[, v, sp]) |
Return the eccentricity of nodes in G. |
edge_betweenness(G[, k, normalized, weight, ...]) |
|
edge_betweenness_centrality(G[, k, ...]) |
Compute betweenness centrality for edges. |
edge_betweenness_centrality_subset(G, ...[, ...]) |
Compute betweenness centrality for edges for a subset of nodes. |
edge_boundary(G, nbunch1[, nbunch2, data, ...]) |
Returns the edge boundary of nbunch1. |
edge_connectivity(G[, s, t, flow_func]) |
Returns the edge connectivity of the graph or digraph G. |
edge_current_flow_betweenness_centrality(G) |
Compute current-flow betweenness centrality for edges. |
edge_current_flow_betweenness_centrality_subset(G, ...) |
Compute current-flow betweenness centrality for edges using subsets of nodes. |
edge_dfs(G[, source, orientation]) |
A directed, depth-first traversal of edges in G, beginning at source. |
edge_expansion(G, S[, T, weight]) |
Returns the edge expansion between two node sets. |
edge_load_centrality(G[, cutoff]) |
Compute edge load. |
edges(G[, nbunch]) |
Return iterator over edges incident to nodes in nbunch. |
efficiency(G, u, v) |
Returns the efficiency of a pair of nodes in a graph. |
ego_graph(G, n[, radius, center, ...]) |
Returns induced subgraph of neighbors centered at node n within a given radius. |
eigenvector_centrality(G[, max_iter, tol, ...]) |
Compute the eigenvector centrality for the graph G. |
eigenvector_centrality_numpy(G[, weight, ...]) |
Compute the eigenvector centrality for the graph G. |
empty_graph([n, create_using]) |
Return the empty graph with n nodes and zero edges. |
enumerate_all_cliques(G) |
Returns all cliques in an undirected graph. |
erdos_renyi_graph(n, p[, seed, directed]) |
Returns a G_{n,p} random graph, also known as an Erdős-Rényi graph or a binomial graph. |
estrada_index(G) |
Return the Estrada index of a the graph G. |
eulerian_circuit(G[, source]) |
Returns an iterator over the edges of an Eulerian circuit in G. |
expected_degree_graph(w[, seed, selfloops]) |
Return a random graph with given expected degrees. |
fast_could_be_isomorphic(G1, G2) |
Returns False if graphs are definitely not isomorphic. |
fast_gnp_random_graph(n, p[, seed, directed]) |
Returns a G_{n,p} random graph, also known as an Erdős-Rényi graph or a binomial graph. |
faster_could_be_isomorphic(G1, G2) |
Returns False if graphs are definitely not isomorphic. |
fiedler_vector(G[, weight, normalized, tol, ...]) |
Return the Fiedler vector of a connected undirected graph. |
find_cliques(G) |
Returns all maximal cliques in an undirected graph. |
find_cliques_recursive(G) |
Returns all maximal cliques in a graph. |
find_cores(G) |
Return the core number for each vertex. |
find_cycle(G[, source, orientation]) |
Returns the edges of a cycle found via a directed, depth-first traversal. |
find_induced_nodes(G, s, t[, treewidth_bound]) |
Returns the set of induced nodes in the path from s to t. |
florentine_families_graph() |
Return Florentine families graph. |
flow_hierarchy(G[, weight]) |
Returns the flow hierarchy of a directed network. |
floyd_warshall(G[, weight]) |
Find all-pairs shortest path lengths using Floyd’s algorithm. |
floyd_warshall_numpy(G[, nodelist, weight]) |
Find all-pairs shortest path lengths using Floyd’s algorithm. |
floyd_warshall_predecessor_and_distance(G[, ...]) |
Find all-pairs shortest path lengths using Floyd’s algorithm. |
freeze(G) |
Modify graph to prevent further change by adding or removing nodes or edges. |
from_dict_of_dicts(d[, create_using, ...]) |
Return a graph from a dictionary of dictionaries. |
from_dict_of_lists(d[, create_using]) |
Return a graph from a dictionary of lists. |
from_edgelist(edgelist[, create_using]) |
Return a graph from a list of edges. |
from_numpy_matrix(A[, parallel_edges, ...]) |
Return a graph from numpy matrix. |
from_pandas_dataframe(df, source, target[, ...]) |
Return a graph from Pandas DataFrame. |
from_scipy_sparse_matrix(A[, ...]) |
Creates a new graph from an adjacency matrix given as a SciPy sparse matrix. |
frucht_graph([create_using]) |
Return the Frucht Graph. |
fruchterman_reingold_layout(G[, k, pos, ...]) |
Position nodes using Fruchterman-Reingold force-directed algorithm. |
full_rary_tree(r, n[, create_using]) |
Creates a full r-ary tree of n vertices. |
gaussian_random_partition_graph(n, s, v, ...) |
Generate a Gaussian random partition graph. |
general_random_intersection_graph(n, m, p) |
Return a random intersection graph with independent probabilities for connections between node and attribute sets. |
generate_adjlist(G[, delimiter]) |
Generate a single line of the graph G in adjacency list format. |
generate_edgelist(G[, delimiter, data]) |
Generate a single line of the graph G in edge list format. |
generate_gexf(G[, encoding, prettyprint, ...]) |
Generate lines of GEXF format representation of G. |
generate_gml(G[, stringizer]) |
Generate a single entry of the graph G in GML format. |
generate_graph6(G[, nodes, header]) |
Generate graph6 format string from a simple undirected graph. |
generate_graphml(G[, encoding, prettyprint]) |
Generate GraphML lines for G |
generate_multiline_adjlist(G[, delimiter]) |
Generate a single line of the graph G in multiline adjacency list format. |
generate_pajek(G) |
Generate lines in Pajek graph format. |
generate_sparse6(G[, nodes, header]) |
Generate sparse6 format string from an undirected graph. |
geographical_threshold_graph(n, theta[, ...]) |
Returns a geographical threshold graph. |
get_edge_attributes(G, name) |
Get edge attributes from graph |
get_node_attributes(G, name) |
Get node attributes from graph |
girvan_newman(G[, most_valuable_edge]) |
Finds communities in a graph using the Girvan–Newman method. |
global_efficiency(G) |
Returns the average global efficiency of the graph. |
global_parameters(b, c) |
Return global parameters for a given intersection array. |
global_reaching_centrality(G[, weight, ...]) |
Returns the global reaching centrality of a directed graph. |
gn_graph(n[, kernel, create_using, seed]) |
Return the growing network (GN) digraph with n nodes. |
gnc_graph(n[, create_using, seed]) |
Return the growing network with copying (GNC) digraph with n nodes. |
gnm_random_graph(n, m[, seed, directed]) |
Returns a G_{n,m} random graph. |
gnp_random_graph(n, p[, seed, directed]) |
Returns a G_{n,p} random graph, also known as an Erdős-Rényi graph or a binomial graph. |
gnr_graph(n, p[, create_using, seed]) |
Return the growing network with redirection (GNR) digraph with n nodes and redirection probability p. |
goldberg_radzik(G, source[, weight]) |
Compute shortest path lengths and predecessors on shortest paths in weighted graphs. |
google_matrix(G[, alpha, personalization, ...]) |
Return the Google matrix of the graph. |
graph_clique_number(G[, cliques]) |
Returns the clique number of the graph. |
graph_number_of_cliques(G[, cliques]) |
Returns the number of maximal cliques in the graph. |
greedy_color(G[, strategy, interchange]) |
Color a graph using various strategies of greedy graph coloring. |
grid_2d_graph(m, n[, periodic, create_using]) |
Return the 2d grid graph of mxn nodes |
grid_graph(dim[, periodic]) |
Return the n-dimensional grid graph. |
harmonic_centrality(G[, distance]) |
Compute harmonic centrality for nodes. |
has_path(G, source, target) |
Return True if G has a path from source to target. |
havel_hakimi_graph(deg_sequence[, create_using]) |
Return a simple graph with given degree sequence constructed using the Havel-Hakimi algorithm. |
heawood_graph([create_using]) |
Return the Heawood graph, a (3,6) cage. |
hits(G[, max_iter, tol, nstart, normalized]) |
Return HITS hubs and authorities values for nodes. |
hits_numpy(G[, normalized]) |
Return HITS hubs and authorities values for nodes. |
hits_scipy(G[, max_iter, tol, normalized]) |
Return HITS hubs and authorities values for nodes. |
house_graph([create_using]) |
Return the House graph (square with triangle on top). |
house_x_graph([create_using]) |
Return the House graph with a cross inside the house square. |
hub_matrix(G[, nodelist]) |
Return the HITS hub matrix. |
hypercube_graph(n) |
Return the n-dimensional hypercube. |
icosahedral_graph([create_using]) |
Return the Platonic Icosahedral graph. |
identified_nodes(G, u, v[, self_loops]) |
Returns the graph that results from contracting u and v. |
immediate_dominators(G, start) |
Returns the immediate dominators of all nodes of a directed graph. |
in_degree_centrality(G) |
Compute the in-degree centrality for nodes. |
incidence_matrix(G[, nodelist, edgelist, ...]) |
Return incidence matrix of G. |
info(G[, n]) |
Print short summary of information for the graph G or the node n. |
information_centrality(G[, weight, dtype, ...]) |
Compute current-flow closeness centrality for nodes. |
intersection(G, H) |
Return a new graph that contains only the edges that exist in both G and H. |
intersection_all(graphs) |
Return a new graph that contains only the edges that exist in all graphs. |
intersection_array(G) |
Returns the intersection array of a distance-regular graph. |
is_aperiodic(G) |
Return True if G is aperiodic. |
is_arborescence(G) |
Returns True if G is an arborescence. |
is_attracting_component(G) |
Returns True if G consists of a single attracting component. |
is_biconnected(G) |
Return True if the graph is biconnected, False otherwise. |
is_bipartite(G) |
Returns True if graph G is bipartite, False if not. |
is_branching(G) |
Returns True if G is a branching. |
is_chordal(G) |
Checks whether G is a chordal graph. |
is_connected(G) |
Return True if the graph is connected, false otherwise. |
is_digraphical(in_sequence, out_sequence) |
Returns True if some directed graph can realize the in- and out-degree sequences. |
is_directed(G) |
Return True if graph is directed. |
is_directed_acyclic_graph(G) |
Return True if the graph G is a directed acyclic graph (DAG) or False if not. |
is_distance_regular(G) |
Returns True if the graph is distance regular, False otherwise. |
is_dominating_set(G, nbunch) |
Checks if nbunch is a dominating set for G. |
is_empty(G) |
Returns True if G has no edges. |
is_eulerian(G) |
Returns True if and only if G is Eulerian. |
is_forest(G) |
Returns True if G is a forest. |
is_frozen(G) |
Return True if graph is frozen. |
is_graphical(sequence[, method]) |
Returns True if sequence is a valid degree sequence. |
is_isolate(G, n) |
Determines whether a node is an isolate. |
is_isomorphic(G1, G2[, node_match, edge_match]) |
Returns True if the graphs G1 and G2 are isomorphic and False otherwise. |
is_kl_connected(G, k, l[, low_memory]) |
Returns True if and only if G is locally (k, l)-connected. |
is_matching(G, matching) |
Decides whether the given set or dictionary represents a valid matching in G. |
is_maximal_matching(G, matching) |
Decides whether the given set or dictionary represents a valid maximal matching in G. |
is_multigraphical(sequence) |
Returns True if some multigraph can realize the sequence. |
is_negatively_weighted(G[, edge, weight]) |
Returns True if G has negatively weighted edges. |
is_pseudographical(sequence) |
Returns True if some pseudograph can realize the sequence. |
is_semiconnected(G) |
Return True if the graph is semiconnected, False otherwise. |
is_simple_path(G, nodes) |
Returns True if and only if the given nodes form a simple path in G. |
is_strongly_connected(G) |
Test directed graph for strong connectivity. |
is_strongly_regular(G) |
Returns True if and only if the given graph is strongly regular. |
is_tree(G) |
Returns True if G is a tree. |
is_valid_degree_sequence(sequence[, method]) |
Returns True if sequence is a valid degree sequence. |
is_valid_degree_sequence_erdos_gallai(...) |
Returns True if deg_sequence can be realized by a simple graph. |
is_valid_degree_sequence_havel_hakimi(...) |
Returns True if deg_sequence can be realized by a simple graph. |
is_valid_joint_degree(joint_degrees) |
Checks whether the given joint degree dictionary is realizable as a simple graph. |
is_weakly_connected(G) |
Test directed graph for weak connectivity. |
is_weighted(G[, edge, weight]) |
Returns True if G has weighted edges. |
isolates(G) |
Iterator over isolates in the graph. |
jaccard_coefficient(G[, ebunch]) |
Compute the Jaccard coefficient of all node pairs in ebunch. |
jit_data(G[, indent]) |
Return data in JIT JSON format. |
jit_graph(data) |
Read a graph from JIT JSON. |
johnson(G[, weight]) |
Uses Johnson’s Algorithm to compute shortest paths. |
joint_degree_graph(joint_degrees[, seed]) |
Generates a random simple graph with the given joint degree dictionary. |
k_clique_communities(G, k[, cliques]) |
Find k-clique communities in graph using the percolation method. |
k_components(G[, flow_func]) |
Returns the k-component structure of a graph G. |
k_core(G[, k, core_number]) |
Return the k-core of G. |
k_corona(G, k[, core_number]) |
Return the k-corona of G. |
k_crust(G[, k, core_number]) |
Return the k-crust of G. |
k_nearest_neighbors(G[, source, target, ...]) |
Compute the average degree connectivity of graph. |
k_random_intersection_graph(n, m, k) |
Return a intersection graph with randomly chosen attribute sets for each node that are of equal size (k). |
k_shell(G[, k, core_number]) |
Return the k-shell of G. |
karate_club_graph() |
Return Zachary’s Karate Club graph. |
katz_centrality(G[, alpha, beta, max_iter, ...]) |
Compute the Katz centrality for the nodes of the graph G. |
katz_centrality_numpy(G[, alpha, beta, ...]) |
Compute the Katz centrality for the graph G. |
kernighan_lin_bisection(G[, partition, ...]) |
Partition a graph into two blocks using the Kernighan–Lin algorithm. |
kl_connected_subgraph(G, k, l[, low_memory, ...]) |
Returns the maximum locally (k, l)-connected subgraph of G. |
kosaraju_strongly_connected_components(G[, ...]) |
Generate nodes in strongly connected components of graph. |
krackhardt_kite_graph([create_using]) |
Return the Krackhardt Kite Social Network. |
ladder_graph(n[, create_using]) |
Return the Ladder graph of length n. |
laplacian_matrix(G[, nodelist, weight]) |
Return the Laplacian matrix of G. |
laplacian_spectrum(G[, weight]) |
Return eigenvalues of the Laplacian of G |
lexicographic_product(G, H) |
Return the lexicographic product of G and H. |
lexicographical_topological_sort(G[, key]) |
Return a generator of nodes in lexicographically topologically sorted order. |
line_graph(G[, create_using]) |
Returns the line graph of the graph or digraph G. |
load_centrality(G[, v, cutoff, normalized, ...]) |
Compute load centrality for nodes. |
local_efficiency(G) |
Returns the average local efficiency of the graph. |
local_reaching_centrality(G, v[, paths, ...]) |
Returns the local reaching centrality of a node in a directed graph. |
lollipop_graph(m, n[, create_using]) |
Return the Lollipop Graph; K_m connected to P_n. |
make_clique_bipartite(G[, fpos, ...]) |
Returns the bipartite clique graph corresponding to G. |
make_max_clique_graph(G[, create_using]) |
Returns the maximal clique graph of the given graph. |
make_small_graph(graph_description[, ...]) |
Return the small graph described by graph_description. |
margulis_gabber_galil_graph(n[, create_using]) |
Return the Margulis-Gabber-Galil undirected MultiGraph on n^2 nodes. |
max_flow_min_cost(G, s, t[, capacity, weight]) |
Return a maximum (s, t)-flow of minimum cost. |
max_weight_matching(G[, maxcardinality, weight]) |
Compute a maximum-weighted matching of G. |
maximal_independent_set(G[, nodes]) |
Return a random maximal independent set guaranteed to contain a given set of nodes. |
maximal_matching(G) |
Find a maximal cardinality matching in the graph. |
maximum_branching(G[, attr, default]) |
Returns a maximum branching from G. |
maximum_flow(G, s, t[, capacity, flow_func]) |
Find a maximum single-commodity flow. |
maximum_flow_value(G, s, t[, capacity, ...]) |
Find the value of maximum single-commodity flow. |
maximum_spanning_arborescence(G[, attr, default]) |
Returns a maximum spanning arborescence from G. |
maximum_spanning_edges(G[, algorithm, ...]) |
Generate edges in a maximum spanning forest of an undirected weighted graph. |
maximum_spanning_tree(G[, weight, algorithm]) |
Returns a maximum spanning tree or forest on an undirected graph G. |
min_cost_flow(G[, demand, capacity, weight]) |
Return a minimum cost flow satisfying all demands in digraph G. |
min_cost_flow_cost(G[, demand, capacity, weight]) |
Find the cost of a minimum cost flow satisfying all demands in digraph G. |
minimum_branching(G[, attr, default]) |
Returns a minimum branching from G. |
minimum_cut(G, s, t[, capacity, flow_func]) |
Compute the value and the node partition of a minimum (s, t)-cut. |
minimum_cut_value(G, s, t[, capacity, flow_func]) |
Compute the value of a minimum (s, t)-cut. |
minimum_edge_cut(G[, s, t, flow_func]) |
Returns a set of edges of minimum cardinality that disconnects G. |
minimum_node_cut(G[, s, t, flow_func]) |
Returns a set of nodes of minimum cardinality that disconnects G. |
minimum_spanning_arborescence(G[, attr, default]) |
Returns a minimum spanning arborescence from G. |
minimum_spanning_edges(G[, algorithm, ...]) |
Generate edges in a minimum spanning forest of an undirected weighted graph. |
minimum_spanning_tree(G[, weight, algorithm]) |
Returns a minimum spanning tree or forest on an undirected graph G. |
mixing_dict(xy[, normalized]) |
Return a dictionary representation of mixing matrix. |
mixing_expansion(G, S[, T, weight]) |
Returns the mixing expansion between two node sets. |
modularity_matrix(G[, nodelist, weight]) |
Return the modularity matrix of G. |
modularity_spectrum(G) |
Return eigenvalues of the modularity matrix of G. |
moebius_kantor_graph([create_using]) |
Return the Moebius-Kantor graph. |
multi_source_dijkstra(G, sources[, target, ...]) |
Find shortest weighted paths and lengths from a given set of source nodes. |
multi_source_dijkstra_path(G, sources[, ...]) |
Find shortest weighted paths in G from a given set of source nodes. |
multi_source_dijkstra_path_length(G, sources) |
Find shortest weighted path lengths in G from a given set of source nodes. |
navigable_small_world_graph(n[, p, q, r, ...]) |
Return a navigable small-world graph. |
negative_edge_cycle(G[, weight]) |
Return True if there exists a negative edge cycle anywhere in G. |
neighbors(G, n) |
Return a list of nodes connected to node n. |
network_simplex(G[, demand, capacity, weight]) |
Find a minimum cost flow satisfying all demands in digraph G. |
newman_watts_strogatz_graph(n, k, p[, seed]) |
Return a Newman–Watts–Strogatz small-world graph. |
node_attribute_xy(G, attribute[, nodes]) |
Return iterator of node-attribute pairs for all edges in G. |
node_boundary(G, nbunch1[, nbunch2]) |
Returns the node boundary of nbunch1. |
node_clique_number(G[, nodes, cliques]) |
Returns the size of the largest maximal clique containing each given node. |
node_connected_component(G, n) |
Return the nodes in the component of graph containing node n. |
node_connectivity(G[, s, t, flow_func]) |
Returns node connectivity for a graph or digraph G. |
node_degree_xy(G[, x, y, weight, nodes]) |
Generate node degree-degree pairs for edges in G. |
node_expansion(G, S) |
Returns the node expansion of the set S. |
node_link_data(G[, attrs]) |
Return data in node-link format that is suitable for JSON serialization and use in Javascript documents. |
node_link_graph(data[, directed, ...]) |
Return graph from node-link data format. |
nodes(G) |
Return an iterator over the graph nodes. |
non_edges(graph) |
Returns the non-existent edges in the graph. |
non_neighbors(graph, node) |
Returns the non-neighbors of the node in the graph. |
nonisomorphic_trees(order[, create]) |
Returns a list of nonisomporphic trees |
normalized_cut_size(G, S[, T, weight]) |
Returns the normalized size of the cut between two sets of nodes. |
normalized_laplacian_matrix(G[, nodelist, ...]) |
Return the normalized Laplacian matrix of G. |
null_graph([create_using]) |
Return the Null graph with no nodes or edges. |
number_attracting_components(G) |
Returns the number of attracting components in G. |
number_connected_components(G) |
Return the number of connected components. |
number_of_cliques(G[, nodes, cliques]) |
Returns the number of maximal cliques for each node. |
number_of_edges(G) |
Return the number of edges in the graph. |
number_of_isolates(G) |
Returns the number of isolates in the graph. |
number_of_nodes(G) |
Return the number of nodes in the graph. |
number_of_nonisomorphic_trees(order) |
Returns the number of nonisomorphic trees |
number_strongly_connected_components(G) |
Return number of strongly connected components in graph. |
number_weakly_connected_components(G) |
Return the number of weakly connected components in G. |
numeric_assortativity_coefficient(G, attribute) |
Compute assortativity for numerical node attributes. |
numeric_mixing_matrix(G, attribute[, nodes, ...]) |
Return numeric mixing matrix for attribute. |
octahedral_graph([create_using]) |
Return the Platonic Octahedral graph. |
out_degree_centrality(G) |
Compute the out-degree centrality for nodes. |
overall_reciprocity(G) |
Compute the reciprocity for the whole graph. |
pagerank(G[, alpha, personalization, ...]) |
Return the PageRank of the nodes in the graph. |
pagerank_numpy(G[, alpha, personalization, ...]) |
Return the PageRank of the nodes in the graph. |
pagerank_scipy(G[, alpha, personalization, ...]) |
Return the PageRank of the nodes in the graph. |
pappus_graph() |
Return the Pappus graph. |
parse_adjlist(lines[, comments, delimiter, ...]) |
Parse lines of a graph adjacency list representation. |
parse_edgelist(lines[, comments, delimiter, ...]) |
Parse lines of an edge list representation of a graph. |
parse_gml(lines[, label, destringizer]) |
Parse GML graph from a string or iterable. |
parse_graph6(string) |
Read a simple undirected graph in graph6 format from string. |
parse_graphml(graphml_string[, node_type]) |
Read graph in GraphML format from string. |
parse_leda(lines) |
Read graph in LEDA format from string or iterable. |
parse_multiline_adjlist(lines[, comments, ...]) |
Parse lines of a multiline adjacency list representation of a graph. |
parse_pajek(lines) |
Parse Pajek format graph from string or iterable. |
parse_sparse6(string) |
Read an undirected graph in sparse6 format from string. |
partial_duplication_graph(N, n, p, q[, seed]) |
Return a random graph using the partial duplication model. |
path_graph(n[, create_using]) |
Return the Path graph P_n of linearly connected nodes. |
performance(*args, **kw) |
Returns the performance of a partition. |
periphery(G[, e]) |
Return the periphery of the graph G. |
petersen_graph([create_using]) |
Return the Petersen graph. |
planted_partition_graph(l, k, p_in, p_out[, ...]) |
Return the planted l-partition graph. |
power(G, k) |
Returns the specified power of a graph. |
powerlaw_cluster_graph(n, m, p[, seed]) |
Holme and Kim algorithm for growing graphs with powerlaw degree distribution and approximate average clustering. |
predecessor(G, source[, target, cutoff, ...]) |
Returns dictionary of predecessors for the path from source to all nodes in G. |
preferential_attachment(G[, ebunch]) |
Compute the preferential attachment score of all node pairs in ebunch. |
project(B, nodes[, create_using]) |
|
projected_graph(B, nodes[, multigraph]) |
Returns the projection of B onto one of its node sets. |
quotient_graph(G, partition[, ...]) |
Returns the quotient graph of G under the specified equivalence relation on nodes. |
ra_index_soundarajan_hopcroft(G[, ebunch, ...]) |
Compute the resource allocation index of all node pairs in ebunch using community information. |
radius(G[, e]) |
Return the radius of the graph G. |
random_clustered_graph(joint_degree_sequence) |
Generate a random graph with the given joint independent edge degree and triangle degree sequence. |
random_degree_sequence_graph(sequence[, ...]) |
Return a simple random graph with the given degree sequence. |
random_geometric_graph(n, radius[, dim, ...]) |
Returns a random geometric graph in the unit cube. |
random_k_out_graph(n, k, alpha[, ...]) |
Returns a random k-out graph with preferential attachment. |
random_kernel_graph(n, kernel_integral[, ...]) |
Return an random graph based on the specified kernel. |
random_layout(G[, center, dim]) |
Position nodes uniformly at random in the unit square. |
random_lobster(n, p1, p2[, seed]) |
Returns a random lobster graph. |
random_partition_graph(sizes, p_in, p_out[, ...]) |
Return the random partition graph with a partition of sizes. |
random_powerlaw_tree(n[, gamma, seed, tries]) |
Returns a tree with a power law degree distribution. |
random_powerlaw_tree_sequence(n[, gamma, ...]) |
Returns a degree sequence for a tree with a power law distribution. |
random_regular_graph(d, n[, seed]) |
Returns a random d-regular graph on n nodes. |
random_shell_graph(constructor[, seed]) |
Returns a random shell graph for the constructor given. |
read_adjlist(path[, comments, delimiter, ...]) |
Read graph in adjacency list format from path. |
read_edgelist(path[, comments, delimiter, ...]) |
Read a graph from a list of edges. |
read_gexf(path[, node_type, relabel, version]) |
Read graph in GEXF format from path. |
read_gml(path[, label, destringizer]) |
Read graph in GML format from path. |
read_gpickle(path) |
Read graph object in Python pickle format. |
read_graph6(path) |
Read simple undirected graphs in graph6 format from path. |
read_graphml(path[, node_type]) |
Read graph in GraphML format from path. |
read_leda(path[, encoding]) |
Read graph in LEDA format from path. |
read_multiline_adjlist(path[, comments, ...]) |
Read graph in multi-line adjacency list format from path. |
read_pajek(path[, encoding]) |
Read graph in Pajek format from path. |
read_shp(path[, simplify, geom_attrs]) |
Generates a networkx.DiGraph from shapefiles. |
read_sparse6(path) |
Read an undirected graph in sparse6 format from path. |
read_weighted_edgelist(path[, comments, ...]) |
Read a graph as list of edges with numeric weights. |
read_yaml(path) |
Read graph in YAML format from path. |
reciprocity(G[, nodes]) |
Compute the reciprocity in a directed graph. |
recursive_simple_cycles(G) |
Find simple cycles (elementary circuits) of a directed graph. |
relabel_gexf_graph(G) |
Relabel graph using “label” node keyword for node label. |
relabel_nodes(G, mapping[, copy]) |
Relabel the nodes of the graph G. |
relaxed_caveman_graph(l, k, p[, seed]) |
Return a relaxed caveman graph. |
rescale_layout(pos[, scale]) |
Return scaled position array to (-scale, scale) in all axes. |
resource_allocation_index(G[, ebunch]) |
Compute the resource allocation index of all node pairs in ebunch. |
reverse(G[, copy]) |
Return the reverse directed graph of G. |
rich_club_coefficient(G[, normalized, Q]) |
Returns the rich-club coefficient of the graph G. |
ring_of_cliques(num_cliques, clique_size) |
Defines a “ring of cliques” graph. |
s_metric(G[, normalized]) |
Return the s-metric of graph. |
scale_free_graph(n[, alpha, beta, gamma, ...]) |
Returns a scale-free directed graph. |
sedgewick_maze_graph([create_using]) |
Return a small maze with a cycle. |
set_edge_attributes(G, name, values) |
Sets edge attributes from a given value or dictionary of values. |
set_node_attributes(G, name, values) |
Sets node attributes from a given value or dictionary of values. |
shell_layout(G[, nlist, scale, center, dim]) |
Position nodes in concentric circles. |
shortest_path(G[, source, target, weight]) |
Compute shortest paths in the graph. |
shortest_path_length(G[, source, target, weight]) |
Compute shortest path lengths in the graph. |
shortest_simple_paths(G, source, target[, ...]) |
Generate all simple paths in the graph G from source to target, starting from shortest ones. |
simple_cycles(G) |
Find simple cycles (elementary circuits) of a directed graph. |
single_source_bellman_ford(G, source[, ...]) |
Compute shortest paths and lengths in a weighted graph G. |
single_source_bellman_ford_path(G, source[, ...]) |
Compute shortest path between source and all other reachable nodes for a weighted graph. |
single_source_bellman_ford_path_length(G, source) |
Compute the shortest path length between source and all other reachable nodes for a weighted graph. |
single_source_dijkstra(G, source[, target, ...]) |
Find shortest weighted paths and lengths from a source node. |
single_source_dijkstra_path(G, source[, ...]) |
Find shortest weighted paths in G from a source node. |
single_source_dijkstra_path_length(G, source) |
Find shortest weighted path lengths in G from a source node. |
single_source_shortest_path(G, source[, cutoff]) |
Compute shortest path between source and all other nodes reachable from source. |
single_source_shortest_path_length(G, source) |
Compute the shortest path lengths from source to all reachable nodes. |
spectral_layout(G[, weight, scale, center, dim]) |
Position nodes using the eigenvectors of the graph Laplacian. |
spectral_ordering(G[, weight, normalized, ...]) |
Compute the spectral_ordering of a graph. |
spring_layout(G[, k, pos, fixed, ...]) |
Position nodes using Fruchterman-Reingold force-directed algorithm. |
square_clustering(G[, nodes]) |
Compute the squares clustering coefficient for nodes. |
star_graph(n[, create_using]) |
Return the star graph |
stochastic_graph(G[, copy, weight]) |
Returns a right-stochastic representation of directed graph G. |
stoer_wagner(G[, weight, heap]) |
Returns the weighted minimum edge cut using the Stoer-Wagner algorithm. |
strong_product(G, H) |
Return the strong product of G and H. |
strongly_connected_component_subgraphs(G[, copy]) |
Generate strongly connected components as subgraphs. |
strongly_connected_components(G) |
Generate nodes in strongly connected components of graph. |
strongly_connected_components_recursive(G) |
Generate nodes in strongly connected components of graph. |
subgraph(G, nbunch) |
Return the subgraph induced on nodes in nbunch. |
subgraph_centrality(G) |
Return subgraph centrality for each node in G. |
subgraph_centrality_exp(G) |
Return the subgraph centrality for each node of G. |
symmetric_difference(G, H) |
Return new graph with edges that exist in either G or H but not both. |
tensor_product(G, H) |
Return the tensor product of G and H. |
test([verbosity, doctest, numpy]) |
Run NetworkX tests. |
tetrahedral_graph([create_using]) |
Return the 3-regular Platonic Tetrahedral graph. |
to_dict_of_dicts(G[, nodelist, edge_data]) |
Return adjacency representation of graph as a dictionary of dictionaries. |
to_dict_of_lists(G[, nodelist]) |
Return adjacency representation of graph as a dictionary of lists. |
to_edgelist(G[, nodelist]) |
Return a list of edges in the graph. |
to_networkx_graph(data[, create_using, ...]) |
Make a NetworkX graph from a known data structure. |
to_numpy_matrix(G[, nodelist, dtype, order, ...]) |
Return the graph adjacency matrix as a NumPy matrix. |
to_numpy_recarray(G[, nodelist, dtype, order]) |
Return the graph adjacency matrix as a NumPy recarray. |
to_pandas_dataframe(G[, nodelist, dtype, ...]) |
Return the graph adjacency matrix as a Pandas DataFrame. |
to_scipy_sparse_matrix(G[, nodelist, dtype, ...]) |
Return the graph adjacency matrix as a SciPy sparse matrix. |
topological_sort(G) |
Return a generator of nodes in topologically sorted order. |
transitive_closure(G) |
Returns transitive closure of a directed graph |
transitivity(G) |
Compute graph transitivity, the fraction of all possible triangles present in G. |
tree_data(G, root[, attrs]) |
Return data in tree format that is suitable for JSON serialization and use in Javascript documents. |
tree_graph(data[, attrs]) |
Return graph from tree data format. |
triad_graph(triad_name) |
Returns the triad graph with the given name. |
triadic_census(G) |
Determines the triadic census of a directed graph. |
triangles(G[, nodes]) |
Compute the number of triangles. |
trivial_graph([create_using]) |
Return the Trivial graph with one node (with label 0) and no edges. |
truncated_cube_graph([create_using]) |
Return the skeleton of the truncated cube. |
truncated_tetrahedron_graph([create_using]) |
Return the skeleton of the truncated Platonic tetrahedron. |
tutte_graph([create_using]) |
Return the Tutte graph. |
uniform_random_intersection_graph(n, m, p[, ...]) |
Return a uniform random intersection graph. |
union(G, H[, rename, name]) |
Return the union of graphs G and H. |
union_all(graphs[, rename, name]) |
Return the union of all graphs. |
volume(G, S[, weight]) |
Returns the volume of a set of nodes. |
voronoi_cells(G, center_nodes[, weight]) |
Returns the Voronoi cells centered at center_nodes with respect to the shortest-path distance metric. |
watts_strogatz_graph(n, k, p[, seed]) |
Return a Watts–Strogatz small-world graph. |
waxman_graph(n[, alpha, beta, L, domain, metric]) |
Return a Waxman random graph. |
weakly_connected_component_subgraphs(G[, copy]) |
Generate weakly connected components as subgraphs. |
weakly_connected_components(G) |
Generate weakly connected components of G. |
wheel_graph(n[, create_using]) |
Return the wheel graph |
wiener_index(G[, weight]) |
Returns the Wiener index of the given graph. |
within_inter_cluster(G[, ebunch, delta, ...]) |
Compute the ratio of within- and inter-cluster common neighbors of all node pairs in ebunch. |
write_adjlist(G, path[, comments, ...]) |
Write graph G in single-line adjacency-list format to path. |
write_edgelist(G, path[, comments, ...]) |
Write graph as a list of edges. |
write_gexf(G, path[, encoding, prettyprint, ...]) |
Write G in GEXF format to path. |
write_gml(G, path[, stringizer]) |
Write a graph G in GML format to the file or file handle path. |
write_gpickle(G, path[, protocol]) |
Write graph in Python pickle format. |
write_graph6(G, path[, nodes, header]) |
Write a simple undirected graph to path in graph6 format. |
write_graphml(G, path[, encoding, ...]) |
Write G in GraphML XML format to path |
write_multiline_adjlist(G, path[, ...]) |
Write the graph G in multiline adjacency list format to path |
write_pajek(G, path[, encoding]) |
Write graph in Pajek format to path. |
write_shp(G, outdir) |
Writes a networkx.DiGraph to two shapefiles, edges and nodes. |
write_sparse6(G, path[, nodes, header]) |
Write graph G to given path in sparse6 format. |
write_weighted_edgelist(G, path[, comments, ...]) |
Write graph G as a list of edges with numeric weights. |
write_yaml(G, path[, encoding]) |
Write graph G in YAML format to path. |