Source code for statsmodels.datasets.stackloss.data

"""Stack loss data"""

__docformat__ = 'restructuredtext'

COPYRIGHT   = """This is public domain. """
TITLE       = __doc__
SOURCE      = """
Brownlee, K. A. (1965), "Statistical Theory and Methodology in
Science and Engineering", 2nd edition, New York:Wiley.
"""

DESCRSHORT  = """Stack loss plant data of Brownlee (1965)"""

DESCRLONG   = """The stack loss plant data of Brownlee (1965) contains
21 days of measurements from a plant's oxidation of ammonia to nitric acid.
The nitric oxide pollutants are captured in an absorption tower."""

NOTE        = """::

    Number of Observations - 21

    Number of Variables - 4

    Variable name definitions::

        STACKLOSS - 10 times the percentage of ammonia going into the plant
                    that escapes from the absoroption column
        AIRFLOW   - Rate of operation of the plant
        WATERTEMP - Cooling water temperature in the absorption tower
        ACIDCONC  - Acid concentration of circulating acid minus 50 times 10.
"""

from numpy import recfromtxt, column_stack, array
from statsmodels.datasets import utils as du
from os.path import dirname, abspath

[docs]def load(): """ Load the stack loss data and returns a Dataset class instance. Returns -------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ data = _get_data() return du.process_recarray(data, endog_idx=0, dtype=float)
[docs]def load_pandas(): """ Load the stack loss data and returns a Dataset class instance. Returns -------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ data = _get_data() return du.process_recarray_pandas(data, endog_idx=0, dtype=float)
def _get_data(): filepath = dirname(abspath(__file__)) data = recfromtxt(open(filepath + '/stackloss.csv',"rb"), delimiter=",", names=True, dtype=float) return data