4. Other modules of interest¶
4.1. statsmodel.base¶
- 4.1.1. statsmodels.base
- 4.1.2. statsmodels.base._constraints
- 4.1.3. statsmodels.base.covtype
- 4.1.4. statsmodels.base.data
- 4.1.5. statsmodels.base.l1_slsqp
- 4.1.6. statsmodels.base.l1_solvers_common
- 4.1.7. statsmodels.base.model
- 4.1.8. statsmodels.base.optimizer
- 4.1.9. statsmodels.base._penalties
- 4.1.10. statsmodels.base.wrapper
statsmodels.base |
|
statsmodels.base._constraints |
Created on Thu May 15 16:36:05 2014 |
statsmodels.base.covtype |
Created on Mon Aug 04 08:00:16 2014 |
statsmodels.base.data |
Base tools for handling various kinds of data structures, attaching metadata to |
statsmodels.base.l1_cvxopt |
|
statsmodels.base.l1_slsqp |
Holds files for l1 regularization of LikelihoodModel, using |
statsmodels.base.l1_solvers_common |
Holds common functions for l1 solvers. |
statsmodels.base.model |
|
statsmodels.base.optimizer |
Functions that are general enough to use for any model fitting. |
statsmodels.base._penalties |
A collection of smooth penalty functions. |
statsmodels.base.wrapper |
4.2. statsmodel.datasets¶
statsmodels.datasets |
Datasets module |
statsmodels.datasets.utils |
|
statsmodels.datasets.template_data |
Name of dataset. |
4.2.4. datasets available¶
4.3. statsmodel.duration¶
statsmodels.duration.hazard_regression |
4.4. statsmodel.formula¶
statsmodels.formula.api |
|
statsmodels.formula.formulatools |
4.5. statsmodel.iolib¶
statsmodels.iolib.api |
|
statsmodels.iolib.foreign |
Input/Output tools for working with binary data. |
statsmodels.iolib.smpickle |
Helper files for pickling |
statsmodels.iolib.stata_summary_examples |
. regress totemp gnpdefl gnp unemp armed pop year |
statsmodels.iolib.summary |
|
statsmodels.iolib.summary2 |
|
statsmodels.iolib.table |
Provides a simple table class. |
statsmodels.iolib.tableformatting |
Summary Table formating |
4.6. statsmodel.tests¶
statsmodels.tests.check_for_rpy |
|
statsmodels.tests.coverage_sm |
|
statsmodels.tests.rmodelwrap |
4.7. statsmodel.tools¶
- 4.7.1. statsmodels.tools.catadd
- 4.7.2. statsmodels.tools.compatibility
- 4.7.3. statsmodels.tools.data
- 4.7.4. statsmodels.tools.decorators
- 4.7.5. statsmodels.tools.dump2module
- 4.7.6. statsmodels.tools.eval_measures
- 4.7.7. statsmodels.tools.grouputils
- 4.7.8. statsmodels.tools.linalg
- 4.7.9. statsmodels.tools.numdiff
- 4.7.10. statsmodels.tools.parallel
- 4.7.11. statsmodels.tools.rootfinding
- 4.7.12. statsmodels.tools.sm_exceptions
- 4.7.13. statsmodels.tools.testing
- 4.7.14. statsmodels.tools.tools
- 4.7.15. statsmodels.tools.transform_model
- 4.7.16. statsmodels.tools.web
statsmodels.tools.catadd |
|
statsmodels.tools.compatibility |
|
statsmodels.tools.data |
Compatibility tools for various data structure inputs |
statsmodels.tools.decorators |
|
statsmodels.tools.dump2module |
Save a set of numpy arrays to a python module file that can be imported |
statsmodels.tools.eval_measures |
some measures for evaluation of prediction, tests and model selection |
statsmodels.tools.grouputils |
Tools for working with groups |
statsmodels.tools.linalg |
local, adjusted version from scipy.linalg.basic.py |
statsmodels.tools.numdiff |
numerical differentiation function, gradient, Jacobian, and Hessian |
statsmodels.tools.parallel |
Parallel utility function using joblib |
statsmodels.tools.rootfinding |
Created on Mon Mar 18 15:48:23 2013 |
statsmodels.tools.sm_exceptions |
Contains custom errors and warnings. |
statsmodels.tools.testing |
assert functions from numpy and pandas testing |
statsmodels.tools.tools |
Utility functions models code |
statsmodels.tools.transform_model |
Created on Tue May 27 13:23:24 2014 |
statsmodels.tools.web |
Provides a function to open the system browser to either search or go directly |
4.8. statsmodel.tsa¶
- 4.8.1. statsmodels.tsa.api
- 4.8.2. statsmodels.tsa.adfvalues
- 4.8.3. statsmodels.tsa.ar_model
- 4.8.4. statsmodels.tsa.descriptivestats
- 4.8.5. statsmodels.tsa.interp.denton
- 4.8.6. statsmodels.tsa.kalmanf.kalmanfilter
- 4.8.7. statsmodels.tsa.mlemodel
- 4.8.8. statsmodels.tsa.seasonal
- 4.8.9. statsmodels.tsa.tsatools
- 4.8.10. statsmodels.tsa.varma_process
- 4.8.11. statsmodels.tsa.x13
statsmodels.tsa.api |
|
statsmodels.tsa.adfvalues |
|
statsmodels.tsa.ar_model |
|
statsmodels.tsa.arimsa_model |
|
statsmodels.tsa.arimsa_process |
|
statsmodels.tsa.arimsa_mle |
|
statsmodels.tsa.descriptivestats |
Descriptive Statistics for Time Series |
statsmodels.tsa.interp.denton |
|
statsmodels.tsa.kalmanf.kalmanfilter |
State Space Analysis using the Kalman Filter |
statsmodels.tsa.mlemodel |
Base Classes for Likelihood Models in time series analysis |
statsmodels.tsa.seasonal |
Seasonal Decomposition by Moving Averages |
statsmodels.tsa.tsatools |
|
statsmodels.tsa.varma_process |
Helper and filter functions for VAR and VARMA, and basic VAR class |
statsmodels.tsa.x13 |
Run x12/x13-arima specs in a subprocess from Python and curry results back into python. |
statsmodels.tsa.base.datetools |
|
statsmodels.tsa.base.tsa_model |
statsmodels.tsa.filters.api |
|
statsmodels.tsa.filters._utils |
|
statsmodels.tsa.filters.bk_filter |
|
statsmodels.tsa.filters.cf_filter |
|
statsmodels.tsa.filters.filtertools |
Linear Filters for time series analysis and testing |
statsmodels.tsa.filters.hp_filter |