4.4.1. statsmodels.formula.api

4.4.1.1. Classes

GEE(endog, exog, groups[, time, family, ...]) Estimation of marginal regression models using Generalized Estimating Equations (GEE).
GLM(endog, exog[, family, offset, exposure, ...]) Generalized Linear Models class
GLS(endog, exog[, sigma, missing, hasconst]) Generalized least squares model with a general covariance structure.
GLSAR(endog[, exog, rho, missing]) A regression model with an AR(p) covariance structure.
Logit(endog, exog, **kwargs) Binary choice logit model
MNLogit(endog, exog, **kwargs) Multinomial logit model
MixedLM(endog, exog, groups[, exog_re, ...]) An object specifying a linear mixed effects model.
NegativeBinomial(endog, exog[, ...]) Negative Binomial Model for count data
NominalGEE(endog, exog, groups[, time, ...]) Estimation of nominal response marginal regression models using Generalized Estimating Equations (GEE).
OLS(endog[, exog, missing, hasconst]) A simple ordinary least squares model.
OrdinalGEE(endog, exog, groups[, time, ...]) Estimation of ordinal response marginal regression models using Generalized Estimating Equations (GEE).
PHReg(endog, exog[, status, entry, strata, ...]) Fit the Cox proportional hazards regression model for right censored data.
Poisson(endog, exog[, offset, exposure, missing]) Poisson model for count data
Probit(endog, exog, **kwargs) Binary choice Probit model
QuantReg(endog, exog, **kwargs) Quantile Regression
RLM(endog, exog[, M, missing]) Robust Linear Models
WLS(endog, exog[, weights, missing, hasconst]) A regression model with diagonal but non-identity covariance structure.