3. Main modules of interest¶
3.2. statsmodel.discrete¶
statsmodels.discrete.discrete_margins |
|
statsmodels.discrete.discrete_model |
Limited dependent variable and qualitative variables. |
3.3. statsmodel.distributions¶
statsmodels.distributions |
|
statsmodels.distributions.edgeworth |
|
statsmodels.distributions.empirical_distribution |
Empirical CDF Functions |
statsmodels.distributions.mixture_rvs |
3.4. statsmodel.emplike¶
statsmodels.emplike.api |
api for empirical likelihood |
statsmodels.emplike.aft_el |
Accelerated Failure Time (AFT) Model with empirical likelihood inference. |
statsmodels.emplike.descriptive |
Empirical likelihood inference on descriptive statistics |
statsmodels.emplike.elanova |
This script contains empirical likelihood ANOVA. |
statsmodels.emplike.elregress |
Empirical Likelihood Linear Regression Inference |
statsmodels.emplike.originregress |
This module implements empirical likelihood regression that is forced through the origin. |
3.5. statsmodel.genmod¶
statsmodels.genmod.api |
|
statsmodels.genmod.cov_struct |
|
statsmodels.genmod.generalized_estimating_equations |
Procedures for fitting marginal regression models to dependent data using Generalized Estimating Equations. |
statsmodels.genmod.generalized_linear_model |
Generalized linear models currently supports estimation using the one-parameter |
3.5.5. statsmodel.genmod.families¶
statsmodels.genmod.families |
This module contains the one-parameter exponential families used for fitting GLMs and GAMs. |
statsmodels.genmod.families.family |
The one parameter exponential family distributions used by GLM. |
statsmodels.genmod.families.links |
Defines the link functions to be used with GLM and GEE families. |
statsmodels.genmod.families.varfuncs |
Variance functions for use with the link functions in statsmodels.family.links |
3.6. statsmodel.graphics¶
- 3.6.1. statsmodels.graphics.api
- 3.6.1. statsmodels.graphics.api
- 3.6.2. statsmodels.graphics.boxplots
- 3.6.3. statsmodels.graphics.correlation
- 3.6.4. statsmodels.graphics.dotplots
- 3.6.5. statsmodels.graphics.factorplots
- 3.6.6. statsmodels.graphics.functional
- 3.6.7. statsmodels.graphics.gofplots
- 3.6.8. statsmodels.graphics.mosaicplot
- 3.6.9. statsmodels.graphics.plot_grids
- 3.6.10. statsmodels.graphics.plottools
- 3.6.11. statsmodels.graphics.regressionplots
- 3.6.12. statsmodels.graphics.tsaplots
- 3.6.13. statsmodels.graphics.tukeyplot
- 3.6.14. statsmodels.graphics.utils
statsmodels.graphics.api |
|
statsmodels.graphics.boxplots |
Variations on boxplots. |
statsmodels.graphics.correlation |
correlation plots |
statsmodels.graphics.dotplots |
|
statsmodels.graphics.factorplots |
Authors: Josef Perktold, Skipper Seabold, Denis A. |
statsmodels.graphics.functional |
Module for functional boxplots. |
statsmodels.graphics.gofplots |
|
statsmodels.graphics.mosaicplot |
Create a mosaic plot from a contingency table. |
statsmodels.graphics.plot_grids |
create scatterplot with confidence ellipsis |
statsmodels.graphics.plottools |
|
statsmodels.graphics.regressionplots |
Partial Regression plot and residual plots to find misspecification |
statsmodels.graphics.tsaplots |
Correlation plot functions. |
statsmodels.graphics.tukeyplot |
|
statsmodels.graphics.utils |
Helper functions for graphics with Matplotlib. |
3.7. statsmodel.miscmodels¶
statsmodels.miscmodels.api |
|
statsmodels.miscmodels.count |
Created on Mon Jul 26 08:34:59 2010 |
statsmodels.miscmodels.nonlinls |
Non-linear least squares |
statsmodels.miscmodels.tmodel |
Linear Model with Student-t distributed errors |
statsmodels.miscmodels.try_mlecov |
Multivariate Normal Model with full covariance matrix |
3.8. statsmodels.nonparametric¶
- 3.8.1. statsmodels.nonparametric.api
- 3.8.2. statsmodels.nonparametric.bandwidths
- 3.8.3. statsmodels.nonparametric.kde
- 3.8.4. statsmodels.nonparametric.kdetools
- 3.8.5. statsmodels.nonparametric.kernel_density
- 3.8.6. statsmodels.nonparametric.kernel_regression
- 3.8.7. statsmodels.nonparametric.kernels
- 3.8.8. statsmodels.nonparametric.smoothers_lowess_old
- 3.8.9. statsmodels.nonparametric.smoothers_lowess
statsmodels.nonparametric.api |
|
statsmodels.nonparametric.bandwidths |
|
statsmodels.nonparametric.kde |
Univariate Kernel Density Estimators |
statsmodels.nonparametric.kdetools |
|
statsmodels.nonparametric.kernel_density |
Multivariate Conditional and Unconditional Kernel Density Estimation with Mixed Data Types. |
statsmodels.nonparametric.kernel_regression |
Multivariate Conditional and Unconditional Kernel Density Estimation |
statsmodels.nonparametric.kernels |
Module of kernels that are able to handle continuous as well as categorical variables (both ordered and unordered). |
statsmodels.nonparametric.smoothers_lowess_old |
Univariate lowess function, like in R. |
statsmodels.nonparametric.smoothers_lowess |
Lowess - wrapper for cythonized extension |
3.9. statsmodels.regression¶
statsmodels.regression.feasible_gls |
Created on Tue Dec 20 20:24:20 2011 |
statsmodels.regression.linear_model |
This module implements standard regression models: |
statsmodels.regression.mixed_linear_model |
Linear mixed effects models for Statsmodels |
statsmodels.regression.quantile_regression |
Quantile regression model |
3.10. statsmodel.robust¶
statsmodels.robust.norms |
|
statsmodels.robust.robust_linear_model |
Robust linear models with support for the M-estimators listed under norms. |
statsmodels.robust.scale |
Support and standalone functions for Robust Linear Models |
3.11. statsmodel.stats¶
- 3.11.1. statsmodels.stats.api
- 3.11.2. statsmodels.stats.adnorm
- 3.11.3. statsmodels.stats.anova
- 3.11.4. statsmodels.stats.base
- 3.11.5. statsmodels.stats.contrast
- 3.11.6. statsmodels.stats.correlation_tools
- 3.11.7. statsmodels.stats.descriptivestats
- 3.11.8. statsmodels.stats.diagnostic
- 3.11.9. statsmodels.stats.gof
- 3.11.10. statsmodels.stats.inter_rater
- 3.11.11. statsmodels.stats.lilliefors
- 3.11.12. statsmodels.stats.moment_helpers
- 3.11.13. statsmodels.stats.multicomp
- 3.11.14. statsmodels.stats.multitest
- 3.11.15. statsmodels.stats.multivariate_tools
- 3.11.16. statsmodels.stats.outliers_influence
- 3.11.17. statsmodels.stats.power
- 3.11.18. statsmodels.stats.proportion
- 3.11.19. statsmodels.stats.sandwich_covariance
- 3.11.20. statsmodels.stats.stattools
- 3.11.21. statsmodels.stats.tabledist
- 3.11.22. statsmodels.stats.weightstats
statsmodels.stats.api |
|
statsmodels.stats.adnorm |
Created on Sun Sep 25 21:23:38 2011 |
statsmodels.stats.anova |
|
statsmodels.stats.base |
Base classes for statistical test results |
statsmodels.stats.contrast |
|
statsmodels.stats.correlation_tools |
Created on Fri Aug 17 13:10:52 2012 |
statsmodels.stats.descriptivestats |
|
statsmodels.stats.diagnostic |
|
statsmodels.stats.gof |
extra statistical function and helper functions |
statsmodels.stats.inter_rater |
Inter Rater Agreement |
statsmodels.stats.lilliefors |
Created on Sat Oct 01 13:16:49 2011 |
statsmodels.stats.moment_helpers |
helper functions conversion between moments |
statsmodels.stats.multicomp |
Created on Fri Mar 30 18:27:25 2012 |
statsmodels.stats.multitest |
Multiple Testing and P-Value Correction |
statsmodels.stats.multivariate_tools |
Tools for multivariate analysis |
statsmodels.stats.outliers_influence |
Influence and Outlier Measures |
statsmodels.stats.power |
Statistical power, solving for nobs, ... |
statsmodels.stats.proportion |
Tests and Confidence Intervals for Binomial Proportions |
statsmodels.stats.sandwich_covariance |
Sandwich covariance estimators |
statsmodels.stats.stattools |
Statistical tests to be used in conjunction with the models |
statsmodels.stats.tabledist |
Created on Sat Oct 01 20:20:16 2011 |
statsmodels.stats.weightstats |
Ttests and descriptive statistics with weights |