3.9.1. statsmodels.regression.feasible_gls

Created on Tue Dec 20 20:24:20 2011

Author: Josef Perktold License: BSD-3

3.9.1.1. Functions

atleast_2dcols(x)

3.9.1.2. Classes

GLS(endog, exog[, sigma, missing, hasconst]) Generalized least squares model with a general covariance structure.
GLSHet(endog, exog[, exog_var, weights, link]) A regression model with an estimated heteroscedasticity.
GLSHet2(endog, exog, exog_var[, sigma]) WLS with heteroscedasticity that depends on explanatory variables
OLS(endog[, exog, missing, hasconst]) A simple ordinary least squares model.
RegressionResults(model, params[, ...]) This class summarizes the fit of a linear regression model.
WLS(endog, exog[, weights, missing, hasconst]) A regression model with diagonal but non-identity covariance structure.