3.9.1.2.3. statsmodels.regression.feasible_gls.GLSHet2

class statsmodels.regression.feasible_gls.GLSHet2(endog, exog, exog_var, sigma=None)[source]

WLS with heteroscedasticity that depends on explanatory variables

note: mixing GLS sigma and weights for heteroscedasticity might not make sense

I think rewriting following the pattern of GLSAR is better stopping criteria: improve in GLSAR also, e.g. change in rho

__init__(endog, exog, exog_var, sigma=None)[source]

3.9.1.2.3.1. Methods

__init__(endog, exog, exog_var[, sigma])
fit([lambd])
fit_regularized([method, maxiter, alpha, ...]) Return a regularized fit to a linear regression model.
from_formula(formula, data[, subset]) Create a Model from a formula and dataframe.
hessian(params) The Hessian matrix of the model
information(params) Fisher information matrix of model
initialize()
loglike(params) Returns the value of the Gaussian log-likelihood function at params.
predict(params[, exog]) Return linear predicted values from a design matrix.
score(params) Score vector of model.
whiten(X) GLS whiten method.

3.9.1.2.3.2. Attributes

df_model The model degree of freedom, defined as the rank of the regressor matrix minus 1 if a constant is included.
df_resid The residual degree of freedom, defined as the number of observations minus the rank of the regressor matrix.
endog_names
exog_names