6. statsmodel.sandbox2¶
More sandbox (in subfolders)
6.1. statsmodels.sandbox.archive¶
statsmodels.sandbox.archive.linalg_covmat |
|
statsmodels.sandbox.archive.linalg_decomp_1 |
Recipes for more efficient work with linalg using classes |
statsmodels.sandbox.archive.tsa |
Collection of alternative implementations for time series analysis |
6.2. statsmodels.sandbox.datarich¶
statsmodels.sandbox.datarich |
Econometrics for a Datarich Environment |
statsmodels.sandbox.datarich.factormodels |
Created on Sun Nov 14 08:21:41 2010 |
6.3. statsmodels.sandbox.distributions¶
- 6.3.1. statsmodels.sandbox.distributions
- 6.3.2. statsmodels.sandbox.distributions.copula
- 6.3.3. statsmodels.sandbox.distributions.estimators
- 6.3.4. statsmodels.sandbox.distributions.extras
- 6.3.5. statsmodels.sandbox.distributions.genpareto
- 6.3.6. statsmodels.sandbox.distributions.gof_new
- 6.3.7. statsmodels.sandbox.distributions.multivariate
- 6.3.8. statsmodels.sandbox.distributions.mv_measures
- 6.3.9. statsmodels.sandbox.distributions.mv_normal
- 6.3.10. statsmodels.sandbox.distributions.otherdist
- 6.3.11. statsmodels.sandbox.distributions.quantize
- 6.3.12. statsmodels.sandbox.distributions.sppatch
- 6.3.13. statsmodels.sandbox.distributions.transform_functions
- 6.3.14. statsmodels.sandbox.distributions.transformed
- 6.3.15. statsmodels.sandbox.distributions.try_max
- 6.3.16. statsmodels.sandbox.distributions.try_pot
statsmodels.sandbox.distributions |
temporary location for enhancements to scipy.stats |
statsmodels.sandbox.distributions.copula |
Which Archimedean is Best? |
statsmodels.sandbox.distributions.estimators |
estimate distribution parameters by various methods |
statsmodels.sandbox.distributions.extras |
Various extensions to distributions |
statsmodels.sandbox.distributions.genpareto |
Created on Thu Aug 12 14:59:03 2010 |
statsmodels.sandbox.distributions.gof_new |
More Goodness of fit tests |
statsmodels.sandbox.distributions.multivariate |
Multivariate Distribution |
statsmodels.sandbox.distributions.mv_measures |
using multivariate dependence and divergence measures |
statsmodels.sandbox.distributions.mv_normal |
Multivariate Normal and t distributions |
statsmodels.sandbox.distributions.otherdist |
Parametric Mixture Distributions |
statsmodels.sandbox.distributions.quantize |
Quantizing a continuous distribution in 2d |
statsmodels.sandbox.distributions.sppatch |
patching scipy to fit distributions and expect method |
statsmodels.sandbox.distributions.transform_functions |
Nonlinear Transformation classes |
statsmodels.sandbox.distributions.transformed |
A class for the distribution of a non-linear monotonic transformation of a continuous random variable |
statsmodels.sandbox.distributions.try_max |
adjusted from Denis on pystatsmodels mailing list |
statsmodels.sandbox.distributions.try_pot |
Created on Wed May 04 06:09:18 2011 |
6.4. statsmodels.sandbox.mcevaluate¶
statsmodels.sandbox.mcevaluate |
Econometrics for a Datarich Environment |
statsmodels.sandbox.mcevaluate.arma |
6.5. statsmodels.sandbox.nonparametric¶
- 6.5.1. statsmodels.sandbox.nonparametric.densityorthopoly
- 6.5.2. statsmodels.sandbox.nonparametric.dgp_examples
- 6.5.3. statsmodels.sandbox.nonparametric.kde2
- 6.5.4. statsmodels.sandbox.nonparametric.kdecovclass
- 6.5.5. statsmodels.sandbox.nonparametric.kernel_extras
- 6.5.6. statsmodels.sandbox.nonparametric.kernels
- 6.5.7. statsmodels.sandbox.nonparametric.smoothers
- 6.5.8. statsmodels.sandbox.nonparametric.testdata
statsmodels.sandbox.nonparametric.densityorthopoly |
density estimation based on orthogonal polynomials |
statsmodels.sandbox.nonparametric.dgp_examples |
Examples of non-linear functions for non-parametric regression |
statsmodels.sandbox.nonparametric.kde2 |
|
statsmodels.sandbox.nonparametric.kdecovclass |
subclassing kde |
statsmodels.sandbox.nonparametric.kernel_extras |
Multivariate Conditional and Unconditional Kernel Density Estimation |
statsmodels.sandbox.nonparametric.kernels |
This models contains the Kernels for Kernel smoothing. |
statsmodels.sandbox.nonparametric.smoothers |
This module contains scatterplot smoothers, that is classes who generate a smooth fit of a set of (x,y) pairs. |
statsmodels.sandbox.nonparametric.testdata |
Created on Fri Mar 04 07:36:28 2011 |
6.6. statsmodels.sandbox.panel¶
statsmodels.sandbox.panel.correlation_structures |
Correlation and Covariance Structures |
statsmodels.sandbox.panel.mixed |
Mixed effects models |
statsmodels.sandbox.panel.panel_short |
Panel data analysis for short T and large N |
statsmodels.sandbox.panel.random_panel |
Generate a random process with panel structure |
statsmodels.sandbox.panel.sandwich_covariance_generic |
covariance with (nobs,nobs) loop and general kernel |
statsmodels.sandbox.panel.sandwich_covariance |
temporary compatibility module |
6.7. statsmodels.sandbox.regression¶
- 6.7.1. statsmodels.sandbox.regression.anova_nistcertified
- 6.7.2. statsmodels.sandbox.regression.ar_panel
- 6.7.3. statsmodels.sandbox.regression.example_kernridge
- 6.7.4. statsmodels.sandbox.regression.gmm
- 6.7.5. statsmodels.sandbox.regression.kernridgeregress_class
- 6.7.6. statsmodels.sandbox.regression.onewaygls
- 6.7.7. statsmodels.sandbox.regression.penalized
- 6.7.8. statsmodels.sandbox.regression.predstd
- 6.7.9. statsmodels.sandbox.regression.sympy_diff
- 6.7.10. statsmodels.sandbox.regression.tools
- 6.7.11. statsmodels.sandbox.regression.treewalkerclass
- 6.7.12. statsmodels.sandbox.regression.try_catdata
- 6.7.13. statsmodels.sandbox.regression.try_ols_anova
- 6.7.14. statsmodels.sandbox.regression.try_treewalker
statsmodels.sandbox.regression.anova_nistcertified |
calculating anova and verifying with NIST test data |
statsmodels.sandbox.regression.ar_panel |
Paneldata model with fixed effect (constants) and AR(1) errors |
statsmodels.sandbox.regression.example_kernridge |
|
statsmodels.sandbox.regression.gmm |
Generalized Method of Moments, GMM, and Two-Stage Least Squares for |
statsmodels.sandbox.regression.kernridgeregress_class |
Kernel Ridge Regression for local non-parametric regression |
statsmodels.sandbox.regression.onewaygls |
F test for null hypothesis that coefficients in several regressions are the same |
statsmodels.sandbox.regression.penalized |
linear model with Theil prior probabilistic restrictions, generalized Ridge |
statsmodels.sandbox.regression.predstd |
Additional functions |
statsmodels.sandbox.regression.sympy_diff |
Created on Sat Mar 13 07:56:22 2010 |
statsmodels.sandbox.regression.tools |
gradient/Jacobian of normal and t loglikelihood |
statsmodels.sandbox.regression.treewalkerclass |
Formulas |
statsmodels.sandbox.regression.try_catdata |
|
statsmodels.sandbox.regression.try_ols_anova |
convenience functions for ANOVA type analysis with OLS |
statsmodels.sandbox.regression.try_treewalker |
Trying out tree structure for nested logit |
6.8. statsmodels.sandbox.stats¶
statsmodels.sandbox.stats |
temporary location for enhancements to scipy.stats |
statsmodels.sandbox.stats.contrast_tools |
functions to work with contrasts for multiple tests |
statsmodels.sandbox.stats.diagnostic |
Various Statistical Tests |
statsmodels.sandbox.stats.ex_newtests |
|
statsmodels.sandbox.stats.multicomp |
from pystatsmodels mailinglist 20100524 |
statsmodels.sandbox.stats.runs |
runstest |
statsmodels.sandbox.stats.stats_dhuard |
from David Huard’s scipy sandbox, also attached to a ticket and |
statsmodels.sandbox.stats.stats_mstats_short.py |
6.9. statsmodels.sandbox.tests¶
- 6.9.1. statsmodels.sandbox.tests
- 6.9.2. statsmodels.sandbox.tests.datamlw
- 6.9.3. statsmodels.sandbox.tests.maketests_mlabwrap
- 6.9.4. statsmodels.sandbox.tests.model_results
- 6.9.5. statsmodels.sandbox.tests.savervs
- 6.9.6. statsmodels.sandbox.tests.test_formula
- 6.9.7. statsmodels.sandbox.tests.test_gam
- 6.9.8. statsmodels.sandbox.tests.test_pca
statsmodels.sandbox.tests |
Econometrics for a Datarich Environment |
statsmodels.sandbox.tests.datamlw |
|
statsmodels.sandbox.tests.maketests_mlabwrap |
generate py modules with test cases and results from mlabwrap |
statsmodels.sandbox.tests.model_results |
This should be merged into statsmodels/tests/model_results.py when things move out of the sandbox. |
statsmodels.sandbox.tests.savervs |
generates some ARMA random samples and saves to python module file |
statsmodels.sandbox.tests.test_formula |
Test functions for models.formula |
statsmodels.sandbox.tests.test_gam |
Tests for gam.AdditiveModel and GAM with Polynomials compared to OLS and GLM |
statsmodels.sandbox.tests.test_pca |
tests for pca and arma to ar and ma representation |
6.10. statsmodels.sandbox.tools¶
statsmodels.sandbox.tools |
some helper function for principal component and time series analysis |
statsmodels.sandbox.tools.cross_val |
Utilities for cross validation. |
statsmodels.sandbox.tools.mctools |
Helper class for Monte Carlo Studies for (currently) statistical tests |
statsmodels.sandbox.tools.tools_pca |
Principal Component Analysis |
statsmodels.sandbox.tools.try_mctools |
Created on Fri Sep 30 15:20:45 2011 |
6.11. statsmodels.sandbox.tsa¶
- 6.11.1. statsmodels.sandbox.tsa
- 6.11.2. statsmodels.sandbox.tsa.diffusion
- 6.11.3. statsmodels.sandbox.tsa.diffusion2
- 6.11.4. statsmodels.sandbox.tsa.fftarma
- 6.11.5. statsmodels.sandbox.tsa.movstat
- 6.11.6. statsmodels.sandbox.tsa.try_arma_more
- 6.11.7. statsmodels.sandbox.tsa.try_fi
- 6.11.8. statsmodels.sandbox.tsa.varma
statsmodels.sandbox.tsa |
functions and classes time series analysis |
statsmodels.sandbox.tsa.diffusion |
getting started with diffusions, continuous time stochastic processes |
statsmodels.sandbox.tsa.diffusion2 |
Diffusion 2: jump diffusion, stochastic volatility, stochastic time |
statsmodels.sandbox.tsa.example_arma |
|
statsmodels.sandbox.tsa.fftarma |
Created on Mon Dec 14 19:53:25 2009 |
statsmodels.sandbox.tsa.garch |
|
statsmodels.sandbox.tsa.movstat |
using scipy signal and numpy correlate to calculate some time series |
statsmodels.sandbox.tsa.try_arma_more |
Periodograms for ARMA and time series |
statsmodels.sandbox.tsa.try_fi |
using lfilter to get fractional integration polynomial (1-L)^d, d<1 |
statsmodels.sandbox.tsa.try_var_convolve |
|
statsmodels.sandbox.tsa.varma |
VAR and VARMA process |