6.5.5. statsmodels.sandbox.nonparametric.kernel_extras¶
Multivariate Conditional and Unconditional Kernel Density Estimation with Mixed Data Types
6.5.5.1. References¶
- [1] Racine, J., Li, Q. Nonparametric econometrics: theory and practice.
- Princeton University Press. (2007)
- [2] Racine, Jeff. “Nonparametric Econometrics: A Primer,” Foundation
- and Trends in Econometrics: Vol 3: No 1, pp1-88. (2008) http://dx.doi.org/10.1561/0800000009
- [3] Racine, J., Li, Q. “Nonparametric Estimation of Distributions
- with Categorical and Continuous Data.” Working Paper. (2000)
- [4] Racine, J. Li, Q. “Kernel Estimation of Multivariate Conditional
- Distributions Annals of Economics and Finance 5, 211-235 (2004)
- [5] Liu, R., Yang, L. “Kernel estimation of multivariate
- cumulative distribution function.” Journal of Nonparametric Statistics (2008)
- [6] Li, R., Ju, G. “Nonparametric Estimation of Multivariate CDF
- with Categorical and Continuous Data.” Working Paper
- [7] Li, Q., Racine, J. “Cross-validated local linear nonparametric
- regression” Statistica Sinica 14(2004), pp. 485-512
- [8] Racine, J.: “Consistent Significance Testing for Nonparametric
- Regression” Journal of Business & Economics Statistics
- [9] Racine, J., Hart, J., Li, Q., “Testing the Significance of
- Categorical Predictor Variables in Nonparametric Regression Models”, 2006, Econometric Reviews 25, 523-544
6.5.5.2. Functions¶
gpke (bw, data, data_predict, var_type[, ...]) |
Returns the non-normalized Generalized Product Kernel Estimator |
6.5.5.3. Classes¶
KDEMultivariate (data, var_type[, bw, defaults]) |
Multivariate kernel density estimator. |
KernelReg (endog, exog, var_type[, reg_type, ...]) |
Nonparametric kernel regression class. |
LeaveOneOut (X) |
Generator to give leave-one-out views on X. |
SemiLinear (endog, exog, exog_nonparametric, ...) |
Semiparametric partially linear model, Y = Xb + g(Z) + e . |
SingleIndexModel (endog, exog, var_type) |
Single index semiparametric model y = g(X * b) + e . |
TestFForm (endog, exog, bw, var_type, fform, ...) |
Nonparametric test for functional form. |