6.3.6. statsmodels.sandbox.distributions.gof_new

More Goodness of fit tests

contains

GOF : 1 sample gof tests based on Stephens 1970, plus AD A^2 bootstrap : vectorized bootstrap p-values for gof test with fitted parameters

Created : 2011-05-21 Author : Josef Perktold

parts based on ks_2samp and kstest from scipy.stats.stats (license: Scipy BSD, but were completely rewritten by Josef Perktold)

6.3.6.1. References

6.3.6.2. Functions

a_st70_upp(stat, nobs)
asquare(cdfvals[, axis]) vectorized Anderson Darling A^2, Stephens 1974
bootstrap(distr[, args, nobs, nrep, value, ...]) Monte Carlo (or parametric bootstrap) p-values for gof
bootstrap2(value, distr[, args, nobs, nrep]) Monte Carlo (or parametric bootstrap) p-values for gof
d_st70_upp(stat, nobs)
dminus_st70_upp(stat, nobs)
dplus_st70_upp(stat, nobs)
gof_mc(randfn, distr[, nobs])
ks_2samp(data1, data2) Computes the Kolmogorov-Smirnof statistic on 2 samples.
kstest(rvs, cdf[, args, N, alternative, mode]) Perform the Kolmogorov-Smirnov test for goodness of fit
pval_kstest_approx(D, N)
usqu_st70_upp(stat, nobs)
v_st70_upp(stat, nobs)
wsqu_st70_upp(stat, nobs)

6.3.6.3. Classes

GOF(rvs, cdf[, args, N]) One Sample Goodness of Fit tests
NewNorm just a holder for modified distributions