6.3.12. statsmodels.sandbox.distributions.sppatch

patching scipy to fit distributions and expect method

This adds new methods to estimate continuous distribution parameters with some fixed/frozen parameters. It also contains functions that calculate the expected value of a function for any continuous or discrete distribution

It temporarily also contains Bootstrap and Monte Carlo function for testing the distribution fit, but these are neither general nor verified.

Author: josef-pktd License: Simplified BSD

6.3.12.1. Functions

distfitbootstrap(sample, distr[, nrepl]) run bootstrap for estimation of distribution parameters
distfitmc(sample, distr[, nrepl, distkwds]) run Monte Carlo for estimation of distribution parameters
expect(self[, fn, args, loc, scale, lb, ub, ...]) calculate expected value of a function with respect to the distribution
expect_discrete(self[, fn, args, loc, lb, ...]) calculate expected value of a function with respect to the distribution
expect_v2(self[, fn, args, loc, scale, lb, ...]) calculate expected value of a function with respect to the distribution
fit_fr(self, data, *args, **kwds) estimate distribution parameters by MLE taking some parameters as fixed
nnlf_fr(self, thetash, x, frmask)
printresults(sample, arg, bres[, kind]) calculate and print(Bootstrap or Monte Carlo result