6.3.2. statsmodels.sandbox.distributions.copula

Which Archimedean is Best? Extreme Value copulas formulas are based on Genest 2009

6.3.2.1. References

Genest, C., 2009. Rank-based inference for bivariate extreme-value copulas. The Annals of Statistics, 37(5), pp.2990-3022.

6.3.2.2. Functions

copula_bv_archimedean(u, v, transform[, args])
copula_bv_clayton(u, v, theta) Clayton or Cook, Johnson bivariate copula
copula_bv_ev(u, v, transform[, args]) generic bivariate extreme value copula
copula_bv_frank(u, v, theta) Cook, Johnson bivariate copula
copula_bv_gauss(u, v, rho)
copula_bv_indep(u, v) independent bivariate copula
copula_bv_max(u, v) countermonotonic bivariate copula
copula_bv_min(u, v) comonotonic bivariate copula
copula_bv_t(u, v, rho, df)
copula_mv_archimedean(u, transform[, args, axis]) generic multivariate Archimedean copula
transform_bilogistic(t, beta, delta) bilogistic model of Coles and Tawn 1994, Joe, Smith and Weissman 1992
transform_hr(t, lamda) model of Huesler Reiss 1989
transform_joe(t, a1, a2, theta) asymmetric negative logistic model of Joe 1990
transform_tawn(t, a1, a2, theta) asymmetric logistic model of Tawn 1988
transform_tawn2(t, theta, k) asymmetric mixed model of Tawn 1988
transform_tev(t, rho, x) t-EV model of Demarta and McNeil 2005

6.3.2.3. Classes

CopulaBivariate(marginalcdfs, copula[, copargs]) bivariate copula class
TransfClayton
TransfFrank
TransfGumbel requires theta >=1
TransfIndep
Transforms()