6.1.2. statsmodels.sandbox.archive.linalg_decomp_1

Recipes for more efficient work with linalg using classes

intended for use for multivariate normal and linear regression calculations

x is the data (nobs, nvars) m is the moment matrix (x’x) or a covariance matrix Sigma

examples: x’sigma^{-1}x z = Px where P=Sigma^{-1/2} or P=Sigma^{1/2}

Initially assume positive definite, then add spectral cutoff and regularization of moment matrix, and extend to PCA

maybe extend to sparse if some examples work out (transformation matrix P for random effect and for toeplitz)

Author: josef-pktd Created on 2010-10-20

6.1.2.1. Functions

get_function_name(func)
maxabs(x)
testcompare(m1, m2)
tiny2zero(x[, eps]) replace abs values smaller than eps by zero, makes copy

6.1.2.2. Classes

CholArray([data, sym]) Class that defines linalg operation on an array
OneTimeProperty(func) A descriptor to make special properties that become normal attributes.
PlainMatrixArray([data, sym]) Class that defines linalg operation on an array
SvdArray([data, sym]) Class that defines linalg operation on an array