3.9.4. statsmodels.regression.quantile_regression¶
Quantile regression model
Model parameters are estimated using iterated reweighted least squares. The asymptotic covariance matrix estimated using kernel density estimation.
Author: Vincent Arel-Bundock License: BSD-3 Created: 2013-03-19
The original IRLS function was written for Matlab by Shapour Mohammadi, University of Tehran, 2008 (shmohammadi@gmail.com), with some lines based on code written by James P. Lesage in Applied Econometrics Using MATLAB(1999).PP. 73-4. Translated to python with permission from original author by Christian Prinoth (christian at prinoth dot name).
3.9.4.1. Functions¶
bofinger(n, q) |
|
chain_dot(*arrs) |
Returns the dot product of the given matrices. |
chamberlain(n, q[, alpha]) |
|
hall_sheather(n, q[, alpha]) |
3.9.4.2. Classes¶
QuantReg(endog, exog, **kwargs) |
Quantile Regression |
QuantRegResults(model, params[, ...]) |
Results instance for the QuantReg model |
RegressionModel(endog, exog, **kwargs) |
Base class for linear regression models. |
RegressionResults(model, params[, ...]) |
This class summarizes the fit of a linear regression model. |
RegressionResultsWrapper(results) |
3.9.4.3. Exceptions¶
ConvergenceWarning |
|
IterationLimitWarning |