3.4.2. statsmodels.emplike.aft_el

Accelerated Failure Time (AFT) Model with empirical likelihood inference.

AFT regression analysis is applicable when the researcher has access to a randomly right censored dependent variable, a matrix of exogenous variables and an indicatior variable (delta) that takes a value of 0 if the observation is censored and 1 otherwise.

3.4.2.1. AFT References

Stute, W. (1993). “Consistent Estimation Under Random Censorship when Covariables are Present.” Journal of Multivariate Analysis. Vol. 45. Iss. 1. 89-103

3.4.2.2. EL and AFT References

Zhou, Kim And Bathke. “Empirical Likelihood Analysis for the Heteroskedastic Accelerated Failure Time Model.” Manuscript: URL: www.ms.uky.edu/~mai/research/CasewiseEL20080724.pdf

Zhou, M. (2005). Empirical Likelihood Ratio with Arbitrarily Censored/ Truncated Data by EM Algorithm. Journal of Computational and Graphical Statistics. 14:3, 643-656.

3.4.2.3. Functions

add_constant(data[, prepend, has_constant]) This appends a column of ones to an array if prepend==False.

3.4.2.4. Classes

AFTResults(model)
OLS(endog[, exog, missing, hasconst]) A simple ordinary least squares model.
OptAFT() Provides optimization functions used in estimating and conducting inference in an AFT model.
WLS(endog, exog[, weights, missing, hasconst]) A regression model with diagonal but non-identity covariance structure.
emplikeAFT(endog, exog, censors) Class for estimating and conducting inference in an AFT model.

3.4.2.5. Exceptions

IterationLimitWarning