3.8.7. statsmodels.nonparametric.kernels¶
Module of kernels that are able to handle continuous as well as categorical variables (both ordered and unordered).
This is a slight deviation from the current approach in statsmodels.nonparametric.kernels where each kernel is a class object.
Having kernel functions rather than classes makes extension to a multivariate kernel density estimation much easier.
NOTE: As it is, this module does not interact with the existing API
3.8.7.1. Functions¶
aitchison_aitken (h, Xi, x[, num_levels]) |
The Aitchison-Aitken kernel, used for unordered discrete random variables. |
aitchison_aitken_cdf (h, Xi, x_u) |
|
aitchison_aitken_convolution (h, Xi, Xj) |
|
aitchison_aitken_reg (h, Xi, x) |
A version for the Aitchison-Aitken kernel for nonparametric regression. |
d_gaussian (h, Xi, x) |
|
gaussian (h, Xi, x) |
Gaussian Kernel for continuous variables Parameters ———- h : 1-D ndarray, shape (K,) The bandwidths used to estimate the value of the kernel function. |
gaussian_cdf (h, Xi, x) |
|
gaussian_convolution (h, Xi, x) |
Calculates the Gaussian Convolution Kernel |
wang_ryzin (h, Xi, x) |
The Wang-Ryzin kernel, used for ordered discrete random variables. |
wang_ryzin_cdf (h, Xi, x_u) |
|
wang_ryzin_convolution (h, Xi, Xj) |
|
wang_ryzin_reg (h, Xi, x) |
A version for the Wang-Ryzin kernel for nonparametric regression. |