3.8.6. statsmodels.nonparametric.kernel_regression¶
Multivariate Conditional and Unconditional Kernel Density Estimation with Mixed Data Types
3.8.6.1. References¶
- [1] Racine, J., Li, Q. Nonparametric econometrics: theory and practice.
- Princeton University Press. (2007)
- [2] Racine, Jeff. “Nonparametric Econometrics: A Primer,” Foundation
- and Trends in Econometrics: Vol 3: No 1, pp1-88. (2008) http://dx.doi.org/10.1561/0800000009
- [3] Racine, J., Li, Q. “Nonparametric Estimation of Distributions
- with Categorical and Continuous Data.” Working Paper. (2000)
- [4] Racine, J. Li, Q. “Kernel Estimation of Multivariate Conditional
- Distributions Annals of Economics and Finance 5, 211-235 (2004)
- [5] Liu, R., Yang, L. “Kernel estimation of multivariate
- cumulative distribution function.” Journal of Nonparametric Statistics (2008)
- [6] Li, R., Ju, G. “Nonparametric Estimation of Multivariate CDF
- with Categorical and Continuous Data.” Working Paper
- [7] Li, Q., Racine, J. “Cross-validated local linear nonparametric
- regression” Statistica Sinica 14(2004), pp. 485-512
- [8] Racine, J.: “Consistent Significance Testing for Nonparametric
- Regression” Journal of Business & Economics Statistics
- [9] Racine, J., Hart, J., Li, Q., “Testing the Significance of
- Categorical Predictor Variables in Nonparametric Regression Models”, 2006, Econometric Reviews 25, 523-544
3.8.6.2. Functions¶
gpke (bw, data, data_predict, var_type[, ...]) |
Returns the non-normalized Generalized Product Kernel Estimator |
3.8.6.3. Classes¶
EstimatorSettings ([efficient, randomize, ...]) |
Object to specify settings for density estimation or regression. |
GenericKDE |
Base class for density estimation and regression KDE classes. |
KernelCensoredReg (endog, exog, var_type, ...) |
Nonparametric censored regression. |
KernelReg (endog, exog, var_type[, reg_type, ...]) |
Nonparametric kernel regression class. |
LeaveOneOut (X) |
Generator to give leave-one-out views on X. |
TestRegCoefC (model, test_vars[, nboot, ...]) |
Significance test for continuous variables in a nonparametric regression. |
TestRegCoefD (model, test_vars[, nboot, ...]) |
Significance test for the categorical variables in a nonparametric regression. |