3.6.11. statsmodels.graphics.regressionplots

Partial Regression plot and residual plots to find misspecification

Author: Josef Perktold License: BSD-3 Created: 2011-01-23

update 2011-06-05 : start to convert example to usable functions 2011-10-27 : docstrings

3.6.11.1. Functions

abline_plot([intercept, slope, horiz, vert, ...]) Plots a line given an intercept and slope.
add_lowess(ax[, lines_idx, frac]) Add Lowess line to a plot.
influence_plot(results[, external, alpha, ...]) Plot of influence in regression.
lowess(endog, exog[, frac, it, delta, ...]) LOWESS (Locally Weighted Scatterplot Smoothing)
maybe_unwrap_results(results) Gets raw results back from wrapped results.
plot_ccpr(results, exog_idx[, ax]) Plot CCPR against one regressor.
plot_ccpr_grid(results[, exog_idx, grid, fig]) Generate CCPR plots against a set of regressors, plot in a grid.
plot_fit(results, exog_idx[, y_true, ax]) Plot fit against one regressor.
plot_leverage_resid2(results[, alpha, ...]) Plots leverage statistics vs.
plot_partregress(endog, exog_i, exog_others) Plot partial regression for a single regressor.
plot_partregress_grid(results[, exog_idx, ...]) Plot partial regression for a set of regressors.
plot_regress_exog(results, exog_idx[, fig]) Plot regression results against one regressor.
wls_prediction_std(res[, exog, weights, alpha]) calculate standard deviation and confidence interval for prediction

3.6.11.2. Classes

OLS(endog[, exog, missing, hasconst]) A simple ordinary least squares model.