4.7.6. statsmodels.tools.eval_measures

some measures for evaluation of prediction, tests and model selection

Created on Tue Nov 08 15:23:20 2011

Author: Josef Perktold License: BSD-3

4.7.6.1. Functions

aic(llf, nobs, df_modelwc) Akaike information criterion
aic_sigma(sigma2, nobs, df_modelwc[, islog]) Akaike information criterion
aicc(llf, nobs, df_modelwc) Akaike information criterion (AIC) with small sample correction
aicc_sigma(sigma2, nobs, df_modelwc[, islog]) Akaike information criterion (AIC) with small sample correction
bias(x1, x2[, axis]) bias, mean error
bic(llf, nobs, df_modelwc) Bayesian information criterion (BIC) or Schwarz criterion
bic_sigma(sigma2, nobs, df_modelwc[, islog]) Bayesian information criterion (BIC) or Schwarz criterion
hqic(llf, nobs, df_modelwc) Hannan-Quinn information criterion (HQC)
hqic_sigma(sigma2, nobs, df_modelwc[, islog]) Hannan-Quinn information criterion (HQC)
iqr(x1, x2[, axis]) interquartile range of error
maxabs(x1, x2[, axis]) maximum absolute error
meanabs(x1, x2[, axis]) mean absolute error
medianabs(x1, x2[, axis]) median absolute error
medianbias(x1, x2[, axis]) median bias, median error
mse(x1, x2[, axis]) mean squared error
rmse(x1, x2[, axis]) root mean squared error
stde(x1, x2[, ddof, axis]) standard deviation of error
vare(x1, x2[, ddof, axis]) variance of error