4.7.6. statsmodels.tools.eval_measures¶
some measures for evaluation of prediction, tests and model selection
Created on Tue Nov 08 15:23:20 2011
Author: Josef Perktold License: BSD-3
4.7.6.1. Functions¶
aic (llf, nobs, df_modelwc) |
Akaike information criterion |
aic_sigma (sigma2, nobs, df_modelwc[, islog]) |
Akaike information criterion |
aicc (llf, nobs, df_modelwc) |
Akaike information criterion (AIC) with small sample correction |
aicc_sigma (sigma2, nobs, df_modelwc[, islog]) |
Akaike information criterion (AIC) with small sample correction |
bias (x1, x2[, axis]) |
bias, mean error |
bic (llf, nobs, df_modelwc) |
Bayesian information criterion (BIC) or Schwarz criterion |
bic_sigma (sigma2, nobs, df_modelwc[, islog]) |
Bayesian information criterion (BIC) or Schwarz criterion |
hqic (llf, nobs, df_modelwc) |
Hannan-Quinn information criterion (HQC) |
hqic_sigma (sigma2, nobs, df_modelwc[, islog]) |
Hannan-Quinn information criterion (HQC) |
iqr (x1, x2[, axis]) |
interquartile range of error |
maxabs (x1, x2[, axis]) |
maximum absolute error |
meanabs (x1, x2[, axis]) |
mean absolute error |
medianabs (x1, x2[, axis]) |
median absolute error |
medianbias (x1, x2[, axis]) |
median bias, median error |
mse (x1, x2[, axis]) |
mean squared error |
rmse (x1, x2[, axis]) |
root mean squared error |
stde (x1, x2[, ddof, axis]) |
standard deviation of error |
vare (x1, x2[, ddof, axis]) |
variance of error |