4.7.9. statsmodels.tools.numdiff¶
numerical differentiation function, gradient, Jacobian, and Hessian
Author : josef-pkt License : BSD
4.7.9.1. Functions¶
approx_fprime (x, f[, epsilon, args, kwargs, ...]) |
Gradient of function, or Jacobian if function f returns 1d array |
approx_fprime_cs (x, f[, epsilon, args, kwargs]) |
Calculate gradient or Jacobian with complex step derivative approximation |
approx_hess (x, f[, epsilon, args, kwargs]) |
Calculate Hessian with finite difference derivative approximation |
approx_hess1 (x, f[, epsilon, args, kwargs, ...]) |
Calculate Hessian with finite difference derivative approximation |
approx_hess2 (x, f[, epsilon, args, kwargs, ...]) |
Calculate Hessian with finite difference derivative approximation |
approx_hess3 (x, f[, epsilon, args, kwargs]) |
Calculate Hessian with finite difference derivative approximation |
approx_hess_cs (x, f[, epsilon, args, kwargs]) |
Calculate Hessian with complex-step derivative approximation |