4.7.8.1.4. statsmodels.tools.linalg.pinv2¶
-
statsmodels.tools.linalg.
pinv2
(a, cond=None, rcond=None)[source]¶ Compute the (Moore-Penrose) pseudo-inverse of a matrix.
Calculate a generalized inverse of a matrix using its singular-value decomposition and including all ‘large’ singular values.
Parameters: a : array, shape (M, N)
Matrix to be pseudo-inverted
cond, rcond : float or None
Cutoff for ‘small’ singular values. Singular values smaller than rcond*largest_singular_value are considered zero.
If None or -1, suitable machine precision is used.
Returns: B : array, shape (N, M)
Raises LinAlgError if SVD computation does not converge
Examples
>>> from numpy import * >>> a = random.randn(9, 6) >>> B = linalg.pinv2(a) >>> allclose(a, dot(a, dot(B, a))) True >>> allclose(B, dot(B, dot(a, B))) True