Source code for statsmodels.emplike.originregress

"""
This module implements empirical likelihood regression that is forced through
the origin.

This is different than regression not forced through the origin because the
maximum empirical likelihood estimate is calculated with a vector of ones in
the exogenous matrix but restricts the intercept parameter to be 0.  This
results in significantly more narrow confidence intervals and different
parameter estimates.

For notes on regression not forced through the origin, see empirical likelihood
methods in the OLSResults class.

General References
------------------
Owen, A.B. (2001). Empirical Likelihood.  Chapman and Hall. p. 82.

"""

import numpy as np
from scipy.stats import chi2
from scipy import optimize
# When descriptive merged, this will be changed
from statsmodels.tools.tools import add_constant
from statsmodels.regression.linear_model import OLS, RegressionResults


[docs]class ELOriginRegress(object): """ Empirical Likelihood inference and estimation for linear regression through the origin Parameters ---------- endog: nx1 array Array of response variables exog: nxk array Array of exogenous variables. Assumes no array of ones Attributes ---------- endog : nx1 array Array of response variables exog : nxk array Array of exogenous variables. Assumes no array of ones nobs : float Number of observations nvar : float Number of exogenous regressors """
[docs] def __init__(self, endog, exog): self.endog = endog self.exog = exog self.nobs = float(self.exog.shape[0]) try: self.nvar = float(exog.shape[1]) except IndexError: self.nvar = 1.
[docs] def fit(self): """ Fits the model and provides regression results. Returns ------- Results: class Empirical likelihood regression class """ exog_with = add_constant(self.exog, prepend=True) restricted_model = OLS(self.endog, exog_with) restricted_fit = restricted_model.fit() restricted_el = restricted_fit.el_test( np.array([0]), np.array([0]), ret_params=1) params = np.squeeze(restricted_el[3]) beta_hat_llr = restricted_el[0] llf = np.sum(np.log(restricted_el[2])) return OriginResults(restricted_model, params, beta_hat_llr, llf)
[docs] def predict(self, params, exog=None): if exog is None: exog = self.exog return np.dot(add_constant(exog, prepend=True), params)
[docs]class OriginResults(RegressionResults): """ A Results class for empirical likelihood regression through the origin Parameters ---------- model : class An OLS model with an intercept params : 1darray Fitted parameters est_llr : float The log likelihood ratio of the model with the intercept restricted to 0 at the maximum likelihood estimates of the parameters. llr_restricted/llr_unrestricted llf_el : float The log likelihood of the fitted model with the intercept restricted to 0. Attributes ---------- model : class An OLS model with an intercept params : 1darray Fitted parameter llr : float The log likelihood ratio of the maximum empirical likelihood estimate llf_el : float The log likelihood of the fitted model with the intercept restricted to 0 Notes ----- IMPORTANT. Since EL estimation does not drop the intercept parameter but instead estimates the slope parameters conditional on the slope parameter being 0, the first element for params will be the intercept, which is restricted to 0. IMPORTANT. This class inherits from RegressionResults but inference is conducted via empirical likelihood. Therefore, any methods that require an estimate of the covariance matrix will not function. Instead use el_test and conf_int_el to conduct inference. Examples -------- >>> import statsmodels.api as sm >>> import numpy as np >>> data = sm.datasets.bc.load() >>> model = sm.emplike.OriginRegress(data.endog, data.exog) >>> fitted = model.fit() >>> fitted.params >>> array([ 0. , 0.00351813]) >>> # The 0 is the intercept term. >>> fitted.el_test(np.array([.0034]), np.array([1])) >>> (3.6696503297979302, 0.055411808127497755) >>> fitted.conf_int_el(1) >>> (0.0033971871114706867, 0.0036373150174892847 >>> fitted.conf_int() >>> TypeError: unsupported operand type(s) for *: 'instancemethod' and 'float' >>> # No covariance matrix so normal inference is not valid """
[docs] def __init__(self, model, params, est_llr, llf_el): self.model = model self.params = np.squeeze(params) self.llr = est_llr self.llf_el = llf_el
[docs] def el_test(self, b0_vals, param_nums, method='nm', stochastic_exog=1, return_weights=0): """ Returns the llr and p-value for a hypothesized parameter value for a regression that goes through the origin Parameters ---------- b0_vals : 1darray The hypothesized value to be tested param_num : 1darray Which parameters to test. Note this uses python indexing but the '0' parameter refers to the intercept term, which is assumed 0. Therefore, param_num should be > 0. return_weights : bool If true, returns the weights that optimize the likelihood ratio at b0_vals. Default is False method : string Can either be 'nm' for Nelder-Mead or 'powell' for Powell. The optimization method that optimizes over nuisance parameters. Default is 'nm' stochastic_exog : bool When TRUE, the exogenous variables are assumed to be stochastic. When the regressors are nonstochastic, moment conditions are placed on the exogenous variables. Confidence intervals for stochastic regressors are at least as large as non-stochastic regressors. Default is TRUE Returns ------- res : tuple pvalue and likelihood ratio """ b0_vals = np.hstack((0, b0_vals)) param_nums = np.hstack((0, param_nums)) test_res = self.model.fit().el_test(b0_vals, param_nums, method=method, stochastic_exog=stochastic_exog, return_weights=return_weights) llr_test = test_res[0] llr_res = llr_test - self.llr pval = chi2.sf(llr_res, self.model.exog.shape[1] - 1) if return_weights: return llr_res, pval, test_res[2] else: return llr_res, pval
[docs] def conf_int_el(self, param_num, upper_bound=None, lower_bound=None, sig=.05, method='nm', stochastic_exog=1): """ Returns the confidence interval for a regression parameter when the regression is forced through the origin Parameters ---------- param_num : int The parameter number to be tested. Note this uses python indexing but the '0' parameter refers to the intercept term upper_bound : float The maximum value the upper confidence limit can be. The closer this is to the confidence limit, the quicker the computation. Default is .00001 confidence limit under normality lower_bound : float The minimum value the lower confidence limit can be. Default is .00001 confidence limit under normality sig : float, optional The significance level. Default .05 method : str, optional Algorithm to optimize of nuisance params. Can be 'nm' or 'powell'. Default is 'nm'. Returns ------- ci: tuple The confidence interval for the parameter 'param_num' """ r0 = chi2.ppf(1 - sig, 1) param_num = np.array([param_num]) if upper_bound is None: upper_bound = (np.squeeze(self.model.fit(). conf_int(.0001)[param_num])[1]) if lower_bound is None: lower_bound = (np.squeeze(self.model.fit().conf_int(.00001) [param_num])[0]) f = lambda b0: self.el_test(np.array([b0]), param_num, method=method, stochastic_exog=stochastic_exog)[0] - r0 lowerl = optimize.brentq(f, lower_bound, self.params[param_num]) upperl = optimize.brentq(f, self.params[param_num], upper_bound) return (lowerl, upperl)