Source code for statsmodels.sandbox.archive.tsa

'''Collection of alternative implementations for time series analysis

'''


'''
>>> signal.fftconvolve(x,x[::-1])[len(x)-1:len(x)+10]/x.shape[0]
array([  2.12286549e+00,   1.27450889e+00,   7.86898619e-02,
        -5.80017553e-01,  -5.74814915e-01,  -2.28006995e-01,
         9.39554926e-02,   2.00610244e-01,   1.32239575e-01,
         1.24504352e-03,  -8.81846018e-02])
>>> sm.tsa.stattools.acovf(X, fft=True)[:order+1]
array([  2.12286549e+00,   1.27450889e+00,   7.86898619e-02,
        -5.80017553e-01,  -5.74814915e-01,  -2.28006995e-01,
         9.39554926e-02,   2.00610244e-01,   1.32239575e-01,
         1.24504352e-03,  -8.81846018e-02])

>>> import nitime.utils as ut
>>> ut.autocov(s)[:order+1]
array([  2.12286549e+00,   1.27450889e+00,   7.86898619e-02,
        -5.80017553e-01,  -5.74814915e-01,  -2.28006995e-01,
         9.39554926e-02,   2.00610244e-01,   1.32239575e-01,
         1.24504352e-03,  -8.81846018e-02])
'''

[docs]def acovf_fft(x, demean=True): '''autocovariance function with call to fftconvolve, biased Parameters ---------- x : array_like timeseries, signal demean : boolean If true, then demean time series Returns ------- acovf : array autocovariance for data, same length as x might work for nd in parallel with time along axis 0 ''' from scipy import signal x = np.asarray(x) if demean: x = x - x.mean() signal.fftconvolve(x,x[::-1])[len(x)-1:len(x)+10]/x.shape[0]