Source code for statsmodels.sandbox.cox

'''Cox proportional hazards regression model.


some dimension problems
fixed import errors
currently produces parameter estimate but then raises exception for other results


finally, after running the script several times, I get a OSError with too many
open file handles

updates and changes :

as of 2010-05-15
AttributeError: 'CoxPH' object has no attribute 'cachedir'
Traceback (most recent call last):
  File "C:\...\scikits\statsmodels\sandbox\cox.py", line 244, in <module>
    res = c.newton([0.4])
AttributeError: 'CoxPH' object has no attribute 'newton'

replaced newton by call to new fit method for mle with bfgs

feels very slow
need testcase before trying to fix

'''
from __future__ import print_function
from statsmodels.compat.python import iterkeys, range
import shutil
import tempfile

import numpy as np


from statsmodels.base import model
from . import survival

[docs]class Discrete(object): """ A simple little class for working with discrete random vectors. Note: assumes x is 2-d and observations are in 0 axis, variables in 1 axis """
[docs] def __init__(self, x, w=None): self.x = np.squeeze(x) if self.x.shape == (): self.x = np.array([self.x]) ## #JP added and removed again b/c still broadcast error ## if self.x.ndim == 1: ## self.x = self.x[:,None] self.n = self.x.shape[0] if w is None: w = np.ones(self.n, np.float64) else: if w.shape[0] != self.n: raise ValueError('incompatible shape for weights w') if np.any(np.less(w, 0)): raise ValueError('weights should be non-negative') self.w = w*1.0 / w.sum()
[docs] def mean(self, f=None): #JP: this is expectation, "expect" in mine if f is None: fx = self.x else: fx = f(self.x) return (fx * self.w).sum()
[docs] def cov(self): mu = self.mean() #JP: call to method (confusing name) dx = self.x - mu#np.multiply.outer(mu, self.x.shape[1]) return np.dot(dx, np.transpose(dx))
## if dx.ndim == 1: ## dx = dx[:,None] ## return np.dot(dx.T, dx)
[docs]class Observation(survival.RightCensored): def __getitem__(self, item): if self.namespace is not None: return self.namespace[item] else: return getattr(self, item)
[docs] def __init__(self, time, delta, namespace=None): self.namespace = namespace survival.RightCensored.__init__(self, time, delta)
def __call__(self, formula, time=None, **extra): return formula(namespace=self, time=time, **extra)
[docs]class CoxPH(model.LikelihoodModel): """Cox proportional hazards regression model."""
[docs] def __init__(self, subjects, formula, time_dependent=False): self.subjects, self.formula = subjects, formula self.time_dependent = time_dependent self.initialize(self.subjects)
[docs] def initialize(self, subjects): print('called initialize') self.failures = {} for i in range(len(subjects)): s = subjects[i] if s.delta: if s.time not in self.failures: self.failures[s.time] = [i] else: self.failures[s.time].append(i) self.failure_times = list(iterkeys(self.failures)) self.failure_times.sort()
[docs] def cache(self): if self.time_dependent: self.cachedir = tempfile.mkdtemp() self.design = {} self.risk = {} first = True for t in iterkeys(self.failures): if self.time_dependent: d = np.array([s(self.formula, time=t) for s in self.subjects]).astype(float)[:,None] dshape = d.shape dfile = file(tempfile.mkstemp(dir=self.cachedir)[1], 'w') d.tofile(dfile) dfile.close() del(d) self.design[t] = np.memmap(dfile.name, dtype=np.dtype(float), shape=dshape) elif first: d = np.array([s(self.formula, time=t) for s in self.subjects]).astype(np.float64) self.design[t] = d else: self.design[t] = d self.risk[t] = np.compress([s.atrisk(t) for s in self.subjects], np.arange(self.design[t].shape[0]),axis=-1)
# this raised exception on exit, def __del__(self): try: shutil.rmtree(self.cachedir, ignore_errors=True) except AttributeError: print("AttributeError: 'CoxPH' object has no attribute 'cachedir'") pass
[docs] def loglike(self, b, ties='breslow'): logL = 0 for t in iterkeys(self.failures): fail = self.failures[t] d = len(fail) risk = self.risk[t] Zb = np.dot(self.design[t], b) logL += Zb[fail].sum() if ties == 'breslow': s = np.exp(Zb[risk]).sum() logL -= np.log(np.exp(Zb[risk]).sum()) * d elif ties == 'efron': s = np.exp(Zb[risk]).sum() r = np.exp(Zb[fail]).sum() for j in range(d): logL -= np.log(s - j * r / d) elif ties == 'cox': raise NotImplementedError('Cox tie breaking method not \ implemented') else: raise NotImplementedError('tie breaking method not recognized') return logL
[docs] def score(self, b, ties='breslow'): score = 0 for t in iterkeys(self.failures): fail = self.failures[t] d = len(fail) risk = self.risk[t] Z = self.design[t] score += Z[fail].sum() if ties == 'breslow': w = np.exp(np.dot(Z, b)) rv = Discrete(Z[risk], w=w[risk]) score -= rv.mean() * d elif ties == 'efron': w = np.exp(np.dot(Z, b)) score += Z[fail].sum() for j in range(d): efron_w = w efron_w[fail] -= i * w[fail] / float(d) rv = Discrete(Z[risk], w=efron_w[risk]) score -= rv.mean() elif ties == 'cox': raise NotImplementedError('Cox tie breaking method not \ implemented') else: raise NotImplementedError('tie breaking method not recognized') return np.array([score])
[docs] def information(self, b, ties='breslow'): info = 0 #np.zeros((len(b),len(b))) #0 score = 0 for t in iterkeys(self.failures): fail = self.failures[t] d = len(fail) risk = self.risk[t] Z = self.design[t] if ties == 'breslow': w = np.exp(np.dot(Z, b)) rv = Discrete(Z[risk], w=w[risk]) info += rv.cov() elif ties == 'efron': w = np.exp(np.dot(Z, b)) score += Z[fail].sum() for j in range(d): efron_w = w efron_w[fail] -= i * w[fail] / d rv = Discrete(Z[risk], w=efron_w[risk]) info += rv.cov() elif ties == 'cox': raise NotImplementedError('Cox tie breaking method not \ implemented') else: raise NotImplementedError('tie breaking method not recognized') return score
if __name__ == '__main__': import numpy.random as R n = 100 X = np.array([0]*n + [1]*n) b = 0.4 lin = 1 + b*X Y = R.standard_exponential((2*n,)) / lin delta = R.binomial(1, 0.9, size=(2*n,)) subjects = [Observation(Y[i], delta[i]) for i in range(2*n)] for i in range(2*n): subjects[i].X = X[i] import statsmodels.sandbox.formula as F x = F.Quantitative('X') f = F.Formula(x) c = CoxPH(subjects, f) # c.cache() # temp file cleanup doesn't work on windows c = CoxPH(subjects, f, time_dependent=True) c.cache() #this creates tempfile cache, # no tempfile cache is created in normal use of CoxPH #res = c.newton([0.4]) #doesn't work anymore res=c.fit([0.4],method="bfgs") print(res.params) print(dir(c)) #print c.fit(Y) #c.information(res.params) #raises exception ''' Note: Replacement for c.newton >>> c.fit() Traceback (most recent call last): File "<pyshell#1>", line 1, in <module> c.fit() File "C:\Josef\eclipsegworkspace\statsmodels-josef-experimental\scikits\statsmodels\model.py", line 132, in fit start_params = [0]*self.exog.shape[1] # will fail for shape (K,) AttributeError: 'CoxPH' object has no attribute 'exog' >>> c.fit([0.4]) Traceback (most recent call last): File "<pyshell#2>", line 1, in <module> c.fit([0.4]) File "C:\Josef\eclipsegworkspace\statsmodels-josef-experimental\scikits\statsmodels\model.py", line 148, in fit H = self.hessian(history[-1]) File "C:\Josef\eclipsegworkspace\statsmodels-josef-experimental\scikits\statsmodels\model.py", line 115, in hessian raise NotImplementedError NotImplementedError >>> c.fit([0.4],method="bfgs") Optimization terminated successfully. Current function value: 802.354181 Iterations: 3 Function evaluations: 5 Gradient evaluations: 5 <statsmodels.model.LikelihoodModelResults object at 0x01D48B70> >>> res=c.fit([0.4],method="bfgs") Optimization terminated successfully. Current function value: 802.354181 Iterations: 3 Function evaluations: 5 Gradient evaluations: 5 >>> res.params array([ 0.34924421]) '''