Source code for statsmodels.sandbox.distributions.genpareto

# -*- coding: utf-8 -*-
"""
Created on Thu Aug 12 14:59:03 2010

Warning: not tried out or tested yet, Done

Author: josef-pktd
"""
from __future__ import print_function
import numpy as np
from scipy import stats
from scipy.misc import comb
from scipy.stats.distributions import rv_continuous

from numpy import where, inf
from numpy import abs as np_abs

## Generalized Pareto  with reversed sign of c as in literature
[docs]class genpareto2_gen(rv_continuous): def _argcheck(self, c): c = np.asarray(c) self.b = where(c > 0, 1.0/np_abs(c), inf) return where(c==0, 0, 1) def _pdf(self, x, c): Px = np.power(1-c*x,-1.0+1.0/c) return Px def _logpdf(self, x, c): return (-1.0+1.0/c) * np.log1p(-c*x) def _cdf(self, x, c): return 1.0 - np.power(1-c*x,1.0/c) def _ppf(self, q, c): vals = -1.0/c * (np.power(1-q, c)-1) return vals def _munp(self, n, c): k = np.arange(0,n+1) val = (1.0/c)**n * np.sum(comb(n,k)*(-1)**k / (1.0+c*k),axis=0) return where(c*n > -1, val, inf) def _entropy(self, c): if (c < 0): return 1-c else: self.b = 1.0 / c return rv_continuous._entropy(self, c)
genpareto2 = genpareto2_gen(a=0.0,name='genpareto', longname="A generalized Pareto", shapes='c',extradoc=""" Generalized Pareto distribution genpareto2.pdf(x,c) = (1+c*x)**(-1-1/c) for c != 0, and for x >= 0 for all c, and x < 1/abs(c) for c < 0. """ ) shape, loc, scale = 0.5, 0, 1 rv = np.arange(5) quant = [0.01, 0.1, 0.5, 0.9, 0.99] for method, x in [('pdf', rv), ('cdf', rv), ('sf', rv), ('ppf', quant), ('isf', quant)]: print(getattr(genpareto2, method)(x, shape, loc, scale)) print(getattr(stats.genpareto, method)(x, -shape, loc, scale)) print(genpareto2.stats(shape, loc, scale, moments='mvsk')) print(stats.genpareto.stats(-shape, loc, scale, moments='mvsk')) print(genpareto2.entropy(shape, loc, scale)) print(stats.genpareto.entropy(-shape, loc, scale))
[docs]def paramstopot(thresh, shape, scale): '''transform shape scale for peak over threshold y = x-u|x>u ~ GPD(k, sigma-k*u) if x ~ GPD(k, sigma) notation of de Zea Bermudez, Kotz k, sigma is shape, scale ''' return shape, scale - shape*thresh
[docs]def paramsfrompot(thresh, shape, scalepot): return shape, scalepot + shape*thresh
[docs]def warnif(cond, msg): if not cond: print(msg, 'does not hold')
[docs]def meanexcess(thresh, shape, scale): '''mean excess function of genpareto assert are inequality conditions in de Zea Bermudez, Kotz ''' warnif(shape > -1, 'shape > -1') warnif(thresh >= 0, 'thresh >= 0') #make it weak inequality warnif((scale - shape*thresh) > 0, '(scale - shape*thresh) > 0') return (scale - shape*thresh) / (1 + shape)
[docs]def meanexcess_plot(data, params=None, lidx=100, uidx=10, method='emp', plot=0): if method == 'est': #doesn't make much sense yet, #estimate the parameters and use theoretical meanexcess if params is None: raise NotImplementedError else: pass #estimate parames elif method == 'emp': #calculate meanexcess from data datasorted = np.sort(data) meanexcess = (datasorted[::-1].cumsum())/np.arange(1,len(data)+1) - datasorted[::-1] meanexcess = meanexcess[::-1] if plot: plt.plot(datasorted[:-uidx], meanexcess[:-uidx]) if not params is None: shape, scale = params plt.plot(datasorted[:-uidx], (scale - datasorted[:-uidx] * shape) / (1. + shape)) return datasorted, meanexcess
print(meanexcess(5, -0.5, 10)) print(meanexcess(5, -2, 10)) import matplotlib.pyplot as plt data = genpareto2.rvs(-0.75, scale=5, size=1000) #data = np.random.uniform(50, size=1000) #data = stats.norm.rvs(0, np.sqrt(50), size=1000) #data = stats.pareto.rvs(1.5, np.sqrt(50), size=1000) tmp = meanexcess_plot(data, params=(-0.75, 5), plot=1) print(tmp[1][-20:]) print(tmp[0][-20:]) #plt.show()
[docs]def meanexcess_emp(data): datasorted = np.sort(data).astype(float) meanexcess = (datasorted[::-1].cumsum())/np.arange(1,len(data)+1) - datasorted[::-1] meancont = (datasorted[::-1].cumsum())/np.arange(1,len(data)+1) meanexcess = meanexcess[::-1] return datasorted, meanexcess, meancont[::-1]
[docs]def meanexcess_dist(self, lb, *args, **kwds): #default function in expect is identity # need args in call if np.ndim(lb) == 0: return self.expect(lb=lb, conditional=True) else: return np.array([self.expect(lb=lbb, conditional=True) for lbb in lb])
ds, me, mc = meanexcess_emp(1.*np.arange(1,10)) print(ds) print(me) print(mc) print(meanexcess_dist(stats.norm, lb=0.5)) print(meanexcess_dist(stats.norm, lb=[-np.inf, -0.5, 0, 0.5])) rvs = stats.norm.rvs(size=100000) rvs = rvs - rvs.mean() print(rvs.mean(), rvs[rvs>-0.5].mean(), rvs[rvs>0].mean(), rvs[rvs>0.5].mean()) ''' C:\Programs\Python25\lib\site-packages\matplotlib-0.99.1-py2.5-win32.egg\matplotlib\rcsetup.py:117: UserWarning: rcParams key "numerix" is obsolete and has no effect; please delete it from your matplotlibrc file warnings.warn('rcParams key "numerix" is obsolete and has no effect;\n' [ 1. 0.5 0. 0. 0. ] [ 1. 0.5 0. 0. 0. ] [ 0. 0.75 1. 1. 1. ] [ 0. 0.75 1. 1. 1. ] [ 1. 0.25 0. 0. 0. ] [ 1. 0.25 0. 0. 0. ] [ 0.01002513 0.1026334 0.58578644 1.36754447 1.8 ] [ 0.01002513 0.1026334 0.58578644 1.36754447 1.8 ] [ 1.8 1.36754447 0.58578644 0.1026334 0.01002513] [ 1.8 1.36754447 0.58578644 0.1026334 0.01002513] (array(0.66666666666666674), array(0.22222222222222243), array(0.56568542494923058), array(-0.60000000000032916)) (array(0.66666666666666674), array(0.22222222222222243), array(0.56568542494923058), array(-0.60000000000032916)) 0.5 0.5 25.0 shape > -1 does not hold -20 [ 41.4980671 42.83145298 44.24197578 45.81622844 47.57145212 49.52692287 51.70553275 54.0830766 56.61358997 59.53409167 62.8970042 66.73494156 71.04227973 76.24015612 82.71835988 89.79611663 99.4252195 106.2372462 94.83432424 0. ] [ 15.79736355 16.16373531 17.44204268 17.47968055 17.73264951 18.23939099 19.02638455 20.79746264 23.7169161 24.48807136 25.90496638 28.35556795 32.27623618 34.65714495 37.37093362 47.32957609 51.27970515 78.98913941 129.04309012 189.66864848] >>> np.arange(10) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> meanexcess_emp(np.arange(10)) (array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), array([4, 4, 5, 5, 5, 6, 6, 5, 4, 0]), array([9, 8, 8, 7, 7, 6, 6, 5, 5, 4])) >>> meanexcess_emp(1*np.arange(10)) (array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), array([4, 4, 5, 5, 5, 6, 6, 5, 4, 0]), array([9, 8, 8, 7, 7, 6, 6, 5, 5, 4])) >>> meanexcess_emp(1.*np.arange(10)) (array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.]), array([ 4.5 , 4.88888889, 5.25 , 5.57142857, 5.83333333, 6. , 6. , 5.66666667, 4.5 , 0. ]), array([ 9. , 8.5, 8. , 7.5, 7. , 6.5, 6. , 5.5, 5. , 4.5])) >>> meanexcess_emp(0.5**np.arange(10)) (array([ 0.00195313, 0.00390625, 0.0078125 , 0.015625 , 0.03125 , 0.0625 , 0.125 , 0.25 , 0.5 , 1. ]), array([ 0.19960938, 0.22135417, 0.24804688, 0.28125 , 0.32291667, 0.375 , 0.4375 , 0.5 , 0.5 , 0. ]), array([ 1. , 0.75 , 0.58333333, 0.46875 , 0.3875 , 0.328125 , 0.28348214, 0.24902344, 0.22178819, 0.19980469])) >>> meanexcess_emp(np.arange(10)**0.5) (array([ 0. , 1. , 1.41421356, 1.73205081, 2. , 2.23606798, 2.44948974, 2.64575131, 2.82842712, 3. ]), array([ 1.93060005, 2.03400006, 2.11147337, 2.16567659, 2.19328936, 2.18473364, 2.11854461, 1.94280904, 1.5 , 0. ]), array([ 3. , 2.91421356, 2.82472615, 2.73091704, 2.63194723, 2.52662269, 2.41311242, 2.28825007, 2.14511117, 1.93060005])) >>> meanexcess_emp(np.arange(10)**-2) (array([-2147483648, 0, 0, 0, 0, 0, 0, 0, 0, 1]), array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), array([ 1, 0, 0, 0, 0, 0, 0, 0, 0, -214748365])) >>> meanexcess_emp(np.arange(10)**(-0.5)) (array([ 0.33333333, 0.35355339, 0.37796447, 0.40824829, 0.4472136 , 0.5 , 0.57735027, 0.70710678, 1. , Inf]), array([ Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, NaN]), array([ Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf])) >>> np.arange(10)**(-0.5) array([ Inf, 1. , 0.70710678, 0.57735027, 0.5 , 0.4472136 , 0.40824829, 0.37796447, 0.35355339, 0.33333333]) >>> meanexcess_emp(np.arange(1,10)**(-0.5)) (array([ 0.33333333, 0.35355339, 0.37796447, 0.40824829, 0.4472136 , 0.5 , 0.57735027, 0.70710678, 1. ]), array([ 0.4857152 , 0.50223543, 0.51998842, 0.53861177, 0.55689141, 0.57111426, 0.56903559, 0.5 , 0. ]), array([ 1. , 0.85355339, 0.76148568, 0.69611426, 0.64633413, 0.60665316, 0.57398334, 0.5464296 , 0.52275224])) >>> meanexcess_emp(np.arange(1,10)) (array([1, 2, 3, 4, 5, 6, 7, 8, 9]), array([4, 5, 5, 5, 6, 6, 5, 4, 0]), array([9, 8, 8, 7, 7, 6, 6, 5, 5])) >>> meanexcess_emp(1.*np.arange(1,10)) (array([ 1., 2., 3., 4., 5., 6., 7., 8., 9.]), array([ 4.88888889, 5.25 , 5.57142857, 5.83333333, 6. , 6. , 5.66666667, 4.5 , 0. ]), array([ 9. , 8.5, 8. , 7.5, 7. , 6.5, 6. , 5.5, 5. ])) >>> datasorted = np.sort(1.*np.arange(1,10)) >>> (datasorted[::-1].cumsum()-datasorted[::-1]) array([ 0., 9., 17., 24., 30., 35., 39., 42., 44.]) >>> datasorted[::-1].cumsum() array([ 9., 17., 24., 30., 35., 39., 42., 44., 45.]) >>> datasorted[::-1] array([ 9., 8., 7., 6., 5., 4., 3., 2., 1.]) >>> '''