# -*- coding: utf-8 -*-
"""Nonlinear Transformation classes
Created on Sat Apr 16 16:06:11 2011
Author: Josef Perktold
License : BSD
"""
from __future__ import print_function
import numpy as np
## Hump and U-shaped functions
[docs]class SquareFunc(TransformFunction):
'''class to hold quadratic function with inverse function and derivative
using instance methods instead of class methods, if we want extension
to parameterized function
'''
[docs] def func(self, x):
return np.power(x, 2.)
[docs] def inverseplus(self, x):
return np.sqrt(x)
[docs] def inverseminus(self, x):
return 0.0 - np.sqrt(x)
[docs] def derivplus(self, x):
return 0.5/np.sqrt(x)
[docs] def derivminus(self, x):
return 0.0 - 0.5/np.sqrt(x)
[docs]class NegSquareFunc(TransformFunction):
'''negative quadratic function
'''
[docs] def func(self, x):
return -np.power(x,2)
[docs] def inverseplus(self, x):
return np.sqrt(-x)
[docs] def inverseminus(self, x):
return 0.0 - np.sqrt(-x)
[docs] def derivplus(self, x):
return 0.0 - 0.5/np.sqrt(-x)
[docs] def derivminus(self, x):
return 0.5/np.sqrt(-x)
[docs]class AbsFunc(TransformFunction):
'''class for absolute value transformation
'''
[docs] def func(self, x):
return np.abs(x)
[docs] def inverseplus(self, x):
return x
[docs] def inverseminus(self, x):
return 0.0 - x
[docs] def derivplus(self, x):
return 1.0
[docs] def derivminus(self, x):
return 0.0 - 1.0
## monotonic functions
# more monotone functions in families.links, some for restricted domains
[docs]class LogFunc(TransformFunction):
[docs] def func(self, x):
return np.log(x)
[docs] def inverse(self, y):
return np.exp(y)
[docs] def deriv(self, x):
return 1./x
[docs]class ExpFunc(TransformFunction):
[docs] def func(self, x):
return np.exp(x)
[docs] def inverse(self, y):
return np.log(y)
[docs] def deriv(self, x):
return np.exp(x)
[docs]class BoxCoxNonzeroFunc(TransformFunction):
[docs] def __init__(self, lamda):
self.lamda = lamda
[docs] def func(self, x):
return (np.power(x, self.lamda) - 1)/self.lamda
[docs] def inverse(self, y):
return (self.lamda * y + 1)/self.lamda
[docs] def deriv(self, x):
return np.power(x, self.lamda - 1)
[docs]class AffineFunc(TransformFunction):
[docs] def __init__(self, constant, slope):
self.constant = constant
self.slope = slope
[docs] def func(self, x):
return self.constant + self.slope * x
[docs] def inverse(self, y):
return (y - self.constant) / self.slope
[docs] def deriv(self, x):
return self.slope
[docs]class ChainFunc(TransformFunction):
[docs] def __init__(self, finn, fout):
self.finn = finn
self.fout = fout
[docs] def func(self, x):
return self.fout.func(self.finn.func(x))
[docs] def inverse(self, y):
return self.f1.inverse(self.fout.inverse(y))
[docs] def deriv(self, x):
z = self.finn.func(x)
return self.fout.deriv(z) * self.finn.deriv(x)
#def inverse(x):
# return np.divide(1.0,x)
#
#mux, stdx = 0.05, 0.1
#mux, stdx = 9.0, 1.0
#def inversew(x):
# return 1.0/(1+mux+x*stdx)
#def inversew_inv(x):
# return (1.0/x - 1.0 - mux)/stdx #.np.divide(1.0,x)-10
#
#def identit(x):
# return x
if __name__ == '__main__':
absf = AbsFunc()
absf.func(5) == 5
absf.func(-5) == 5
absf.inverseplus(5) == 5
absf.inverseminus(5) == -5
chainf = ChainFunc(AffineFunc(1,2), BoxCoxNonzeroFunc(2))
print(chainf.func(3.))
chainf2 = ChainFunc(BoxCoxNonzeroFunc(2), AffineFunc(1,2))
print(chainf.func(3.))