Source code for statsmodels.sandbox.mcevaluate.arma


import numpy as np
from statsmodels.tsa.arima_process import arma_generate_sample
from statsmodels.tsa.arma_mle import Arma


#TODO: still refactoring problem with cov_x
#copied from sandbox.tsa.arima.py
[docs]def mcarma22(niter=10, nsample=1000, ar=None, ma=None, sig=0.5): '''run Monte Carlo for ARMA(2,2) DGP parameters currently hard coded also sample size `nsample` was not a self contained function, used instances from outer scope now corrected ''' #nsample = 1000 #ar = [1.0, 0, 0] if ar is None: ar = [1.0, -0.55, -0.1] #ma = [1.0, 0, 0] if ma is None: ma = [1.0, 0.3, 0.2] results = [] results_bse = [] for _ in range(niter): y2 = arma_generate_sample(ar,ma,nsample+1000, sig)[-nsample:] y2 -= y2.mean() arest2 = Arma(y2) rhohat2a, cov_x2a, infodict, mesg, ier = arest2.fit((2,2)) results.append(rhohat2a) err2a = arest2.geterrors(rhohat2a) sige2a = np.sqrt(np.dot(err2a,err2a)/nsample) #print('sige2a', sige2a, #print('cov_x2a.shape', cov_x2a.shape #results_bse.append(sige2a * np.sqrt(np.diag(cov_x2a))) if not cov_x2a is None: results_bse.append(sige2a * np.sqrt(np.diag(cov_x2a))) else: results_bse.append(np.nan + np.zeros_like(rhohat2a)) return np.r_[ar[1:], ma[1:]], np.array(results), np.array(results_bse)
[docs]def mc_summary(res, rt=None): if rt is None: rt = np.zeros(res.shape[1]) nanrows = np.isnan(res).any(1) print('fractions of iterations with nans', nanrows.mean()) res = res[~nanrows] print('RMSE') print(np.sqrt(((res-rt)**2).mean(0))) print('mean bias') print((res-rt).mean(0)) print('median bias') print(np.median((res-rt),0)) print('median bias percent') print(np.median((res-rt)/rt*100,0)) print('median absolute error') print(np.median(np.abs(res-rt),0)) print('positive error fraction') print((res > rt).mean(0))
if __name__ == '__main__': #short version # true, est, bse = mcarma22(niter=50) # print(true # #print(est # print(est.mean(0) ''' niter 50, sample size=1000, 2 runs [-0.55 -0.1 0.3 0.2 ] [-0.542401 -0.09904305 0.30840599 0.2052473 ] [-0.55 -0.1 0.3 0.2 ] [-0.54681176 -0.09742921 0.2996297 0.20624258] niter=50, sample size=200, 3 runs [-0.55 -0.1 0.3 0.2 ] [-0.64669489 -0.01134491 0.19972259 0.20634019] [-0.55 -0.1 0.3 0.2 ] [-0.53141595 -0.10653234 0.32297968 0.20505973] [-0.55 -0.1 0.3 0.2 ] [-0.50244588 -0.125455 0.33867488 0.19498214] niter=50, sample size=100, 5 runs --> ar1 too low, ma1 too high [-0.55 -0.1 0.3 0.2 ] [-0.35715008 -0.23392766 0.48771794 0.21901059] [-0.55 -0.1 0.3 0.2 ] [-0.3554852 -0.21581914 0.51744748 0.24759245] [-0.55 -0.1 0.3 0.2 ] [-0.3737861 -0.24665911 0.48031939 0.17274438] [-0.55 -0.1 0.3 0.2 ] [-0.30015385 -0.27705506 0.56168199 0.21995759] [-0.55 -0.1 0.3 0.2 ] [-0.35879991 -0.22999604 0.4761953 0.19670835] new version, with burnin 1000 in DGP and demean [-0.55 -0.1 0.3 0.2 ] [-0.56770228 -0.00076025 0.25621825 0.24492449] [-0.55 -0.1 0.3 0.2 ] [-0.27598305 -0.2312364 0.57599134 0.23582417] [-0.55 -0.1 0.3 0.2 ] [-0.38059051 -0.17413628 0.45147109 0.20046776] [-0.55 -0.1 0.3 0.2 ] [-0.47789765 -0.08650743 0.3554441 0.24196087] ''' ar = [1.0, -0.55, -0.1] ma = [1.0, 0.3, 0.2] nsample = 200 run_mc = True#False if run_mc: for sig in [0.1, 0.5, 1.]: import time t0 = time.time() rt, res_rho, res_bse = mcarma22(niter=100, sig=sig) print('\nResults for Monte Carlo') print('true') print(rt) print('nsample =', nsample, 'sigma = ', sig) print('elapsed time for Monte Carlo', time.time()-t0) # 20 seconds for ARMA(2,2), 1000 iterations with 1000 observations #sige2a = np.sqrt(np.dot(err2a,err2a)/nsample) #print('\nbse of one sample' #print(sige2a * np.sqrt(np.diag(cov_x2a)) print('\nMC of rho versus true') mc_summary(res_rho, rt) print('\nMC of bse versus zero') # this implies inf in percent mc_summary(res_bse) print('\nMC of bse versus std') mc_summary(res_bse, res_rho.std(0))