Source code for statsmodels.sandbox.nonparametric.kde2

# -*- coding: utf-8 -*-
from __future__ import print_function
from statsmodels.compat.python import lzip, zip
import numpy as np
from . import kernels


#TODO: should this be a function?
[docs]class KDE(object): """ Kernel Density Estimator Parameters ---------- x : array-like N-dimensional array from which the density is to be estimated kernel : Kernel Class Should be a class from * """ #TODO: amend docs for Nd case?
[docs] def __init__(self, x, kernel=None): x = np.asarray(x) if x.ndim == 1: x = x[:,None] nobs, n_series = x.shape if kernel is None: kernel = kernels.Gaussian() # no meaningful bandwidth yet if n_series > 1: if isinstance( kernel, kernels.CustomKernel ): kernel = kernels.NdKernel(n_series, kernels = kernel) self.kernel = kernel self.n = n_series #TODO change attribute self.x = x
[docs] def density(self, x): return self.kernel.density(self.x, x)
def __call__(self, x, h="scott"): return np.array([self.density(xx) for xx in x])
[docs] def evaluate(self, x, h="silverman"): density = self.kernel.density return np.array([density(xx) for xx in x])
if __name__ == "__main__": from numpy import random import matplotlib.pyplot as plt import statsmodels.nonparametric.bandwidths as bw from statsmodels.sandbox.nonparametric.testdata import kdetest # 1-D case random.seed(142) x = random.standard_t(4.2, size = 50) h = bw.bw_silverman(x) #NOTE: try to do it with convolution support = np.linspace(-10,10,512) kern = kernels.Gaussian(h = h) kde = KDE( x, kern) print(kde.density(1.015469)) print(0.2034675) Xs = np.arange(-10,10,0.1) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(Xs, kde(Xs), "-") ax.set_ylim(-10, 10) ax.set_ylim(0,0.4) # 2-D case x = lzip(kdetest.faithfulData["eruptions"], kdetest.faithfulData["waiting"]) x = np.array(x) x = (x - x.mean(0))/x.std(0) nobs = x.shape[0] H = kdetest.Hpi kern = kernels.NdKernel( 2 ) kde = KDE( x, kern ) print(kde.density( np.matrix( [1,2 ]))) #.T plt.figure() plt.plot(x[:,0], x[:,1], 'o') n_grid = 50 xsp = np.linspace(x.min(0)[0], x.max(0)[0], n_grid) ysp = np.linspace(x.min(0)[1], x.max(0)[1], n_grid) # xsorted = np.sort(x) # xlow = xsorted[nobs/4] # xupp = xsorted[3*nobs/4] # xsp = np.linspace(xlow[0], xupp[0], n_grid) # ysp = np.linspace(xlow[1], xupp[1], n_grid) xr, yr = np.meshgrid(xsp, ysp) kde_vals = np.array([kde.density( np.matrix( [xi, yi ]) ) for xi, yi in zip(xr.ravel(), yr.ravel())]) plt.contour(xsp, ysp, kde_vals.reshape(n_grid, n_grid)) plt.show() # 5 D case # random.seed(142) # mu = [1.0, 4.0, 3.5, -2.4, 0.0] # sigma = np.matrix( # [[ 0.6 - 0.1*abs(i-j) if i != j else 1.0 for j in xrange(5)] for i in xrange(5)]) # x = random.multivariate_normal(mu, sigma, size = 100) # kern = kernel.Gaussian() # kde = KernelEstimate( x, kern )