Source code for statsmodels.sandbox.regression.ar_panel

'''Paneldata model with fixed effect (constants) and AR(1) errors

checking fast evaluation of groupar1filter
quickly written to try out grouparfilter without python loops

maybe the example has MA(1) not AR(1) errors, I'm not sure and changed this.

results look good, I'm also differencing the dummy variable (constants) ???
e.g. nobs = 35
true 0.6, 10, 20, 30   (alpha, mean_0, mean_1, mean_2)
estimate 0.369453125 [ 10.14646929  19.87135086  30.12706505]

Currently minimizes ssr but could switch to minimize llf, i.e. conditional MLE.
This should correspond to iterative FGLS, where data are AR(1) transformed
similar to GLSAR ?
Result statistic from GLS return by OLS on transformed data should be
asymptotically correct (check)

Could be extended to AR(p) errors, but then requires panel with larger T

'''


from __future__ import print_function
import numpy as np
from scipy import optimize

from statsmodels.regression.linear_model import OLS


[docs]class PanelAR1(object):
[docs] def __init__(self, endog, exog=None, groups=None): #take this from a super class, no checking is done here nobs = endog.shape[0] self.endog = endog if not exog is None: self.exog = exog self.groups_start = (np.diff(groups)!=0) self.groups_valid = ~self.groups_start
[docs] def ar1filter(self, xy, alpha): #print(alpha,) return (xy[1:] - alpha * xy[:-1])[self.groups_valid]
[docs] def fit_conditional(self, alpha): y = self.ar1filter(self.endog, alpha) x = self.ar1filter(self.exog, alpha) res = OLS(y, x).fit() return res.ssr #res.llf
[docs] def fit(self): alpha0 = 0.1 #startvalue func = self.fit_conditional fitres = optimize.fmin(func, alpha0) # fit_conditional only returns ssr for now alpha = fitres[0] y = self.ar1filter(self.endog, alpha) x = self.ar1filter(self.exog, alpha) reso = OLS(y, x).fit() return fitres, reso
if __name__ == '__main__': #------------ developement code for groupar1filter and example groups = np.array([0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2, 2,2,2,2,2,2,2,2]) nobs = len(groups) data0 = np.arange(nobs) data = np.arange(1,nobs+1) - 0.5*np.arange(nobs) + 0.1*np.random.randn(nobs) y00 = 0.5*np.random.randn(nobs+1) # I don't think a trend is handled yet data = np.arange(nobs) + y00[1:] + 0.2*y00[:-1] + 0.1*np.random.randn(nobs) #Are these AR(1) or MA(1) errors ??? data = y00[1:] + 0.6*y00[:-1] #+ 0.1*np.random.randn(nobs) group_codes = np.unique(groups) group_dummy = (groups[:,None] == group_codes).astype(int) groups_start = (np.diff(groups)!=0) groups_valid = (np.diff(groups)==0) #this applies to y with length for AR(1) #could use np.nonzero for index instead y = data + np.dot(group_dummy, np.array([10, 20, 30])) y0 = data0 + np.dot(group_dummy, np.array([10, 20, 30])) print(groups_valid) print(np.diff(y)[groups_valid]) alpha = 1 #test with 1 print((y0[1:] - alpha*y0[:-1])[groups_valid]) alpha = 0.2 #test with 1 print((y0[1:] - alpha*y0[:-1] + 0.001)[groups_valid]) #this is now AR(1) for each group separately #------------ #fitting the example exog = np.ones(nobs) exog = group_dummy mod = PanelAR1(y, exog, groups=groups) #mod = PanelAR1(data, exog, groups=groups) #data doesn't contain different means #print(mod.ar1filter(mod.endog, 1)) resa, reso = mod.fit() print(resa[0], reso.params)