Source code for statsmodels.sandbox.rls

"""Restricted least squares

from pandas
License: Simplified BSD
"""
from __future__ import print_function
import numpy as np
from statsmodels.regression.linear_model import WLS, GLS, RegressionResults

[docs]class RLS(GLS): """ Restricted general least squares model that handles linear constraints Parameters ---------- endog: array-like n length array containing the dependent variable exog: array-like n-by-p array of independent variables constr: array-like k-by-p array of linear constraints param (0.): array-like or scalar p-by-1 array (or scalar) of constraint parameters sigma (None): scalar or array-like The weighting matrix of the covariance. No scaling by default (OLS). If sigma is a scalar, then it is converted into an n-by-n diagonal matrix with sigma as each diagonal element. If sigma is an n-length array, then it is assumed to be a diagonal matrix with the given sigma on the diagonal (WLS). Notes ----- endog = exog * beta + epsilon weights' * constr * beta = param See Greene and Seaks, "The Restricted Least Squares Estimator: A Pedagogical Note", The Review of Economics and Statistics, 1991. """
[docs] def __init__(self, endog, exog, constr, param=0., sigma=None): N, Q = exog.shape constr = np.asarray(constr) if constr.ndim == 1: K, P = 1, constr.shape[0] else: K, P = constr.shape if Q != P: raise Exception('Constraints and design do not align') self.ncoeffs = Q self.nconstraint = K self.constraint = constr if np.isscalar(param) and K > 1: param = np.ones((K,)) * param self.param = param if sigma is None: sigma = 1. if np.isscalar(sigma): sigma = np.ones(N) * sigma sigma = np.squeeze(sigma) if sigma.ndim == 1: self.sigma = np.diag(sigma) self.cholsigmainv = np.diag(np.sqrt(sigma)) else: self.sigma = sigma self.cholsigmainv = np.linalg.cholesky(np.linalg.pinv(self.sigma)).T super(GLS, self).__init__(endog, exog)
_rwexog = None @property def rwexog(self): """Whitened exogenous variables augmented with restrictions""" if self._rwexog is None: P = self.ncoeffs K = self.nconstraint design = np.zeros((P + K, P + K)) design[:P, :P] = np.dot(self.wexog.T, self.wexog) #top left constr = np.reshape(self.constraint, (K, P)) design[:P, P:] = constr.T #top right partition design[P:, :P] = constr #bottom left partition design[P:, P:] = np.zeros((K, K)) #bottom right partition self._rwexog = design return self._rwexog _inv_rwexog = None @property def inv_rwexog(self): """Inverse of self.rwexog""" if self._inv_rwexog is None: self._inv_rwexog = np.linalg.inv(self.rwexog) return self._inv_rwexog _rwendog = None @property def rwendog(self): """Whitened endogenous variable augmented with restriction parameters""" if self._rwendog is None: P = self.ncoeffs K = self.nconstraint response = np.zeros((P + K,)) response[:P] = np.dot(self.wexog.T, self.wendog) response[P:] = self.param self._rwendog = response return self._rwendog _ncp = None @property def rnorm_cov_params(self): """Parameter covariance under restrictions""" if self._ncp is None: P = self.ncoeffs self._ncp = self.inv_rwexog[:P, :P] return self._ncp _wncp = None @property def wrnorm_cov_params(self): """ Heteroskedasticity-consistent parameter covariance Used to calculate White standard errors. """ if self._wncp is None: df = self.df_resid pred = np.dot(self.wexog, self.coeffs) eps = np.diag((self.wendog - pred) ** 2) sigmaSq = np.sum(eps) pinvX = np.dot(self.rnorm_cov_params, self.wexog.T) self._wncp = np.dot(np.dot(pinvX, eps), pinvX.T) * df / sigmaSq return self._wncp _coeffs = None @property def coeffs(self): """Estimated parameters""" if self._coeffs is None: betaLambda = np.dot(self.inv_rwexog, self.rwendog) self._coeffs = betaLambda[:self.ncoeffs] return self._coeffs
[docs] def fit(self): rncp = self.wrnorm_cov_params lfit = RegressionResults(self, self.coeffs, normalized_cov_params=rncp) return lfit
if __name__=="__main__": import statsmodels.api as sm dta = np.genfromtxt('./rlsdata.txt', names=True) design = np.column_stack((dta['Y'],dta['Y']**2,dta[['NE','NC','W','S']].view(float).reshape(dta.shape[0],-1))) design = sm.add_constant(design, prepend=True) rls_mod = RLS(dta['G'],design, constr=[0,0,0,1,1,1,1]) rls_fit = rls_mod.fit() print(rls_fit.params)