Source code for statsmodels.sandbox.survival2

#Kaplan-Meier Estimator

import numpy as np
import numpy.linalg as la
import matplotlib.pyplot as plt
from scipy import stats
from statsmodels.iolib.table import SimpleTable

[docs]class KaplanMeier(object): """ KaplanMeier(...) KaplanMeier(data, endog, exog=None, censoring=None) Create an object of class KaplanMeier for estimating Kaplan-Meier survival curves. Parameters ---------- data: array_like An array, with observations in each row, and variables in the columns endog: index (starting at zero) of the column containing the endogenous variable (time) exog: index of the column containing the exogenous variable (must be catagorical). If exog = None, this is equivalent to a single survival curve censoring: index of the column containing an indicator of whether an observation is an event, or a censored observation, with 0 for censored, and 1 for an event Attributes ----------- censorings: List of censorings associated with each unique time, at each value of exog events: List of the number of events at each unique time for each value of exog results: List of arrays containing estimates of the value value of the survival function and its standard error at each unique time, for each value of exog ts: List of unique times for each value of exog Methods ------- fit: Calcuate the Kaplan-Meier estimates of the survival function and its standard error at each time, for each value of exog plot: Plot the survival curves using matplotlib.plyplot summary: Display the results of fit in a table. Gives results for all (including censored) times test_diff: Test for difference between survival curves Examples -------- >>> import statsmodels.api as sm >>> import matplotlib.pyplot as plt >>> import numpy as np >>> from statsmodels.sandbox.survival2 import KaplanMeier >>> dta = sm.datasets.strikes.load() >>> dta = dta.values()[-1] >>> dta[range(5),:] array([[ 7.00000000e+00, 1.13800000e-02], [ 9.00000000e+00, 1.13800000e-02], [ 1.30000000e+01, 1.13800000e-02], [ 1.40000000e+01, 1.13800000e-02], [ 2.60000000e+01, 1.13800000e-02]]) >>> km = KaplanMeier(dta,0) >>> km.fit() >>> km.plot() Doing >>> km.summary() will display a table of the estimated survival and standard errors for each time. The first few lines are Kaplan-Meier Curve ===================================== Time Survival Std. Err ------------------------------------- 1.0 0.983870967742 0.0159984306572 2.0 0.91935483871 0.0345807888235 3.0 0.854838709677 0.0447374942184 4.0 0.838709677419 0.0467104592871 5.0 0.822580645161 0.0485169952543 Doing >>> plt.show() will plot the survival curve Mutliple survival curves: >>> km2 = KaplanMeier(dta,0,exog=1) >>> km2.fit() km2 will estimate a survival curve for each value of industrial production, the column of dta with index one (1). With censoring: >>> censoring = np.ones_like(dta[:,0]) >>> censoring[dta[:,0] > 80] = 0 >>> dta = np.c_[dta,censoring] >>> dta[range(5),:] array([[ 7.00000000e+00, 1.13800000e-02, 1.00000000e+00], [ 9.00000000e+00, 1.13800000e-02, 1.00000000e+00], [ 1.30000000e+01, 1.13800000e-02, 1.00000000e+00], [ 1.40000000e+01, 1.13800000e-02, 1.00000000e+00], [ 2.60000000e+01, 1.13800000e-02, 1.00000000e+00]]) >>> km3 = KaplanMeier(dta,0,exog=1,censoring=2) >>> km3.fit() Test for difference of survival curves >>> log_rank = km3.test_diff([0.0645,-0.03957]) The zeroth element of log_rank is the chi-square test statistic for the difference between the survival curves for exog = 0.0645 and exog = -0.03957, the index one element is the degrees of freedom for the test, and the index two element is the p-value for the test Groups with nan names >>> groups = np.ones_like(dta[:,1]) >>> groups = groups.astype('S4') >>> groups[dta[:,1] > 0] = 'high' >>> groups[dta[:,1] <= 0] = 'low' >>> dta = dta.astype('S4') >>> dta[:,1] = groups >>> dta[range(5),:] array([['7.0', 'high', '1.0'], ['9.0', 'high', '1.0'], ['13.0', 'high', '1.0'], ['14.0', 'high', '1.0'], ['26.0', 'high', '1.0']], dtype='|S4') >>> km4 = KaplanMeier(dta,0,exog=1,censoring=2) >>> km4.fit() """
[docs] def __init__(self, data, endog, exog=None, censoring=None): self.exog = exog self.censoring = censoring cols = [endog] self.endog = 0 if exog != None: cols.append(exog) self.exog = 1 if censoring != None: cols.append(censoring) if exog != None: self.censoring = 2 else: self.censoring = 1 data = data[:,cols] if data.dtype == float or data.dtype == int: self.data = data[~np.isnan(data).any(1)] else: t = (data[:,self.endog]).astype(float) if exog != None: evec = data[:,self.exog] evec = evec[~np.isnan(t)] if censoring != None: cvec = (data[:,self.censoring]).astype(float) cvec = cvec[~np.isnan(t)] t = t[~np.isnan(t)] if censoring != None: t = t[~np.isnan(cvec)] if exog != None: evec = evec[~np.isnan(cvec)] cvec = cvec[~np.isnan(cvec)] cols = [t] if exog != None: cols.append(evec) if censoring != None: cols.append(cvec) data = (np.array(cols)).transpose() self.data = data
[docs] def fit(self): """ Calculate the Kaplan-Meier estimator of the survival function """ self.results = [] self.ts = [] self.censorings = [] self.event = [] if self.exog == None: self.fitting_proc(self.data) else: groups = np.unique(self.data[:,self.exog]) self.groups = groups for g in groups: group = self.data[self.data[:,self.exog] == g] self.fitting_proc(group)
[docs] def plot(self): """ Plot the estimated survival curves. After using this method do plt.show() to display the plot """ plt.figure() if self.exog == None: self.plotting_proc(0) else: for g in range(len(self.groups)): self.plotting_proc(g) plt.ylim(ymax=1.05) plt.ylabel('Survival') plt.xlabel('Time')
[docs] def summary(self): """ Print a set of tables containing the estimates of the survival function, and its standard errors """ if self.exog == None: self.summary_proc(0) else: for g in range(len(self.groups)): self.summary_proc(g)
[docs] def fitting_proc(self, group): """ For internal use """ t = ((group[:,self.endog]).astype(float)).astype(int) if self.censoring == None: events = np.bincount(t) t = np.unique(t) events = events[:,list(t)] events = events.astype(float) eventsSum = np.cumsum(events) eventsSum = np.r_[0,eventsSum] n = len(group) - eventsSum[:-1] else: censoring = ((group[:,self.censoring]).astype(float)).astype(int) reverseCensoring = -1*(censoring - 1) events = np.bincount(t,censoring) censored = np.bincount(t,reverseCensoring) t = np.unique(t) censored = censored[:,list(t)] censored = censored.astype(float) censoredSum = np.cumsum(censored) censoredSum = np.r_[0,censoredSum] events = events[:,list(t)] events = events.astype(float) eventsSum = np.cumsum(events) eventsSum = np.r_[0,eventsSum] n = len(group) - eventsSum[:-1] - censoredSum[:-1] (self.censorings).append(censored) survival = np.cumprod(1-events/n) var = ((survival*survival) * np.cumsum(events/(n*(n-events)))) se = np.sqrt(var) (self.results).append(np.array([survival,se])) (self.ts).append(t) (self.event).append(events)
[docs] def plotting_proc(self, g): """ For internal use """ survival = self.results[g][0] t = self.ts[g] e = (self.event)[g] if self.censoring != None: c = self.censorings[g] csurvival = survival[c != 0] ct = t[c != 0] if len(ct) != 0: plt.vlines(ct,csurvival+0.02,csurvival-0.02) x = np.repeat(t[e != 0], 2) y = np.repeat(survival[e != 0], 2) if self.ts[g][-1] in t[e != 0]: x = np.r_[0,x] y = np.r_[1,1,y[:-1]] else: x = np.r_[0,x,self.ts[g][-1]] y = np.r_[1,1,y] plt.plot(x,y)
[docs] def summary_proc(self, g): """ For internal use """ if self.exog != None: myTitle = ('exog = ' + str(self.groups[g]) + '\n') else: myTitle = "Kaplan-Meier Curve" table = np.transpose(self.results[g]) table = np.c_[np.transpose(self.ts[g]),table] table = SimpleTable(table, headers=['Time','Survival','Std. Err'], title = myTitle) print(table)
[docs] def test_diff(self, groups, rho=None, weight=None): """ test_diff(groups, rho=0) Test for difference between survival curves Parameters ---------- groups: A list of the values for exog to test for difference. tests the null hypothesis that the survival curves for all values of exog in groups are equal rho: compute the test statistic with weight S(t)^rho, where S(t) is the pooled estimate for the Kaplan-Meier survival function. If rho = 0, this is the logrank test, if rho = 0, this is the Peto and Peto modification to the Gehan-Wilcoxon test. weight: User specified function that accepts as its sole arguement an array of times, and returns an array of weights for each time to be used in the test Returns ------- An array whose zeroth element is the chi-square test statistic for the global null hypothesis, that all survival curves are equal, the index one element is degrees of freedom for the test, and the index two element is the p-value for the test. Examples -------- >>> import statsmodels.api as sm >>> import matplotlib.pyplot as plt >>> import numpy as np >>> from statsmodels.sandbox.survival2 import KaplanMeier >>> dta = sm.datasets.strikes.load() >>> dta = dta.values()[-1] >>> censoring = np.ones_like(dta[:,0]) >>> censoring[dta[:,0] > 80] = 0 >>> dta = np.c_[dta,censoring] >>> km = KaplanMeier(dta,0,exog=1,censoring=2) >>> km.fit() Test for difference of survival curves >>> log_rank = km3.test_diff([0.0645,-0.03957]) The zeroth element of log_rank is the chi-square test statistic for the difference between the survival curves using the log rank test for exog = 0.0645 and exog = -0.03957, the index one element is the degrees of freedom for the test, and the index two element is the p-value for the test >>> wilcoxon = km.test_diff([0.0645,-0.03957], rho=1) wilcoxon is the equivalent information as log_rank, but for the Peto and Peto modification to the Gehan-Wilcoxon test. User specified weight functions >>> log_rank = km3.test_diff([0.0645,-0.03957], weight=np.ones_like) This is equivalent to the log rank test More than two groups >>> log_rank = km.test_diff([0.0645,-0.03957,0.01138]) The test can be performed with arbitrarily many groups, so long as they are all in the column exog """ groups = np.asarray(groups) if self.exog == None: raise ValueError("Need an exogenous variable for logrank test") elif (np.in1d(groups,self.groups)).all(): data = self.data[np.in1d(self.data[:,self.exog],groups)] t = ((data[:,self.endog]).astype(float)).astype(int) tind = np.unique(t) NK = [] N = [] D = [] Z = [] if rho != None and weight != None: raise ValueError("Must use either rho or weights, not both") elif rho != None: s = KaplanMeier(data,self.endog,censoring=self.censoring) s.fit() s = (s.results[0][0]) ** (rho) s = np.r_[1,s[:-1]] elif weight != None: s = weight(tind) else: s = np.ones_like(tind) if self.censoring == None: for g in groups: dk = np.bincount((t[data[:,self.exog] == g])) d = np.bincount(t) if np.max(tind) != len(dk): dif = np.max(tind) - len(dk) + 1 dk = np.r_[dk,[0]*dif] dk = dk[:,list(tind)] d = d[:,list(tind)] dk = dk.astype(float) d = d.astype(float) dkSum = np.cumsum(dk) dSum = np.cumsum(d) dkSum = np.r_[0,dkSum] dSum = np.r_[0,dSum] nk = len(data[data[:,self.exog] == g]) - dkSum[:-1] n = len(data) - dSum[:-1] d = d[n>1] dk = dk[n>1] nk = nk[n>1] n = n[n>1] s = s[n>1] ek = (nk * d)/(n) Z.append(np.sum(s * (dk - ek))) NK.append(nk) N.append(n) D.append(d) else: for g in groups: censoring = ((data[:,self.censoring]).astype(float)).astype(int) reverseCensoring = -1*(censoring - 1) censored = np.bincount(t,reverseCensoring) ck = np.bincount((t[data[:,self.exog] == g]), reverseCensoring[data[:,self.exog] == g]) dk = np.bincount((t[data[:,self.exog] == g]), censoring[data[:,self.exog] == g]) d = np.bincount(t,censoring) if np.max(tind) != len(dk): dif = np.max(tind) - len(dk) + 1 dk = np.r_[dk,[0]*dif] ck = np.r_[ck,[0]*dif] dk = dk[:,list(tind)] ck = ck[:,list(tind)] d = d[:,list(tind)] dk = dk.astype(float) d = d.astype(float) ck = ck.astype(float) dkSum = np.cumsum(dk) dSum = np.cumsum(d) ck = np.cumsum(ck) ck = np.r_[0,ck] dkSum = np.r_[0,dkSum] dSum = np.r_[0,dSum] censored = censored[:,list(tind)] censored = censored.astype(float) censoredSum = np.cumsum(censored) censoredSum = np.r_[0,censoredSum] nk = (len(data[data[:,self.exog] == g]) - dkSum[:-1] - ck[:-1]) n = len(data) - dSum[:-1] - censoredSum[:-1] d = d[n>1] dk = dk[n>1] nk = nk[n>1] n = n[n>1] s = s[n>1] ek = (nk * d)/(n) Z.append(np.sum(s * (dk - ek))) NK.append(nk) N.append(n) D.append(d) Z = np.array(Z) N = np.array(N) D = np.array(D) NK = np.array(NK) sigma = -1 * np.dot((NK/N) * ((N - D)/(N - 1)) * D * np.array([(s ** 2)]*len(D)) ,np.transpose(NK/N)) np.fill_diagonal(sigma, np.diagonal(np.dot((NK/N) * ((N - D)/(N - 1)) * D * np.array([(s ** 2)]*len(D)) ,np.transpose(1 - (NK/N))))) chisq = np.dot(np.transpose(Z),np.dot(la.pinv(sigma), Z)) df = len(groups) - 1 return np.array([chisq, df, stats.chi2.sf(chisq,df)]) else: raise ValueError("groups must be in column exog")