Source code for statsmodels.stats.tabledist

# -*- coding: utf-8 -*-
"""
Created on Sat Oct 01 20:20:16 2011

Author: Josef Perktold
License: BSD-3


TODO:
check orientation, size and alpha should be increasing for interp1d,
but what is alpha? can be either sf or cdf probability
change it to use one consistent notation

check: instead of bound checking I could use the fill-value of the interpolators


"""
from __future__ import print_function
from statsmodels.compat.python import range
import numpy as np
from scipy.interpolate import interp1d, interp2d, Rbf
from statsmodels.tools.decorators import cache_readonly


[docs]class TableDist(object): '''Distribution, critical values and p-values from tables currently only 1 extra parameter, e.g. sample size Parameters ---------- alpha : array_like, 1d probabiliy in the table, could be either sf (right tail) or cdf (left tail) size : array_like, 1d second paramater in the table crit_table : array_like, 2d array with critical values for sample size in rows and probability in columns Notes ----- size and alpha should be increasing '''
[docs] def __init__(self, alpha, size, crit_table): self.alpha = np.asarray(alpha) self.size = np.asarray(size) self.crit_table = np.asarray(crit_table) self.n_alpha = len(alpha) self.signcrit = np.sign(np.diff(self.crit_table, 1).mean()) if self.signcrit > 0: #increasing self.critv_bounds = self.crit_table[:,[0,1]] else: self.critv_bounds = self.crit_table[:,[1,0]]
@cache_readonly
[docs] def polyn(self): polyn = [interp1d(self.size, self.crit_table[:,i]) for i in range(self.n_alpha)] return polyn
@cache_readonly
[docs] def poly2d(self): #check for monotonicity ? #fix this, interp needs increasing poly2d = interp2d(self.size, self.alpha, self.crit_table) return poly2d
@cache_readonly
[docs] def polyrbf(self): xs, xa = np.meshgrid(self.size.astype(float), self.alpha) polyrbf = Rbf(xs.ravel(), xa.ravel(), self.crit_table.T.ravel(),function='linear') return polyrbf
def _critvals(self, n): '''rows of the table, linearly interpolated for given sample size Parameters ---------- n : float sample size, second parameter of the table Returns ------- critv : ndarray, 1d critical values (ppf) corresponding to a row of the table Notes ----- This is used in two step interpolation, or if we want to know the critical values for all alphas for any sample size that we can obtain through interpolation ''' return np.array([p(n) for p in self.polyn])
[docs] def prob(self, x, n): '''find pvalues by interpolation, eiter cdf(x) or sf(x) returns extrem probabilities, 0.001 and 0.2, for out of range Parameters ---------- x : array_like observed value, assumed to follow the distribution in the table n : float sample size, second parameter of the table Returns ------- prob : arraylike This is the probability for each value of x, the p-value in underlying distribution is for a statistical test. ''' critv = self._critvals(n) alpha = self.alpha # if self.signcrit == 1: # if x < critv[0]: #generalize: ? np.sign(x - critvals[0]) == self.signcrit: # return alpha[0] # elif x > critv[-1]: # return alpha[-1] # elif self.signcrit == -1: # if x > critv[0]: # return alpha[0] # elif x < critv[-1]: # return alpha[-1] if self.signcrit < 1: #reverse if critv is decreasing critv, alpha = critv[::-1], alpha[::-1] #now critv is increasing if np.size(x) == 1: if x < critv[0]: return alpha[0] elif x > critv[-1]: return alpha[-1] return interp1d(critv, alpha)(x)[()] else: #vectorized cond_low = (x < critv[0]) cond_high = (x > critv[-1]) cond_interior = ~np.logical_or(cond_low, cond_high) probs = np.nan * np.ones(x.shape) #mistake if nan left probs[cond_low] = alpha[0] probs[cond_low] = alpha[-1] probs[cond_interior] = interp1d(critv, alpha)(x[cond_interior]) return probs
[docs] def crit2(self, prob, n): '''returns interpolated quantiles, similar to ppf or isf this can be either cdf or sf depending on the table, twosided? this doesn't work, no more knots warning ''' return self.poly2d(n, prob)
[docs] def crit(self, prob, n): '''returns interpolated quantiles, similar to ppf or isf use two sequential 1d interpolation, first by n then by prob Parameters ---------- prob : array_like probabilities corresponding to the definition of table columns n : int or float sample size, second parameter of the table Returns ------- ppf : array_like critical values with same shape as prob ''' prob = np.asarray(prob) alpha = self.alpha critv = self._critvals(n) #vectorized cond_ilow = (prob > alpha[0]) cond_ihigh = (prob < alpha[-1]) cond_interior = np.logical_or(cond_ilow, cond_ihigh) #scalar if prob.size == 1: if cond_interior: return interp1d(alpha, critv)(prob) else: return np.nan #vectorized quantile = np.nan * np.ones(prob.shape) #nans for outside quantile[cond_interior] = interp1d(alpha, critv)(prob[cond_interior]) return quantile
[docs] def crit3(self, prob, n): '''returns interpolated quantiles, similar to ppf or isf uses Rbf to interpolate critical values as function of `prob` and `n` Parameters ---------- prob : array_like probabilities corresponding to the definition of table columns n : int or float sample size, second parameter of the table Returns ------- ppf : array_like critical values with same shape as prob, returns nan for arguments that are outside of the table bounds ''' prob = np.asarray(prob) alpha = self.alpha #vectorized cond_ilow = (prob > alpha[0]) cond_ihigh = (prob < alpha[-1]) cond_interior = np.logical_or(cond_ilow, cond_ihigh) #scalar if prob.size == 1: if cond_interior: return self.polyrbf(n, prob) else: return np.nan #vectorized quantile = np.nan * np.ones(prob.shape) #nans for outside quantile[cond_interior] = self.polyrbf(n, prob[cond_interior]) return quantile
if __name__ == '__main__': ''' example Lilliefors test for normality An Analytic Approximation to the Distribution of Lilliefors's Test Statistic for Normality Author(s): Gerard E. Dallal and Leland WilkinsonSource: The American Statistician, Vol. 40, No. 4 (Nov., 1986), pp. 294-296Published by: American Statistical AssociationStable URL: http://www.jstor.org/stable/2684607 . ''' #for this test alpha is sf probability, i.e. right tail probability alpha = np.array([ 0.2 , 0.15 , 0.1 , 0.05 , 0.01 , 0.001])[::-1] size = np.array([ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 100, 400, 900], float) #critical values, rows are by sample size, columns are by alpha crit_lf = np.array( [[303, 321, 346, 376, 413, 433], [289, 303, 319, 343, 397, 439], [269, 281, 297, 323, 371, 424], [252, 264, 280, 304, 351, 402], [239, 250, 265, 288, 333, 384], [227, 238, 252, 274, 317, 365], [217, 228, 241, 262, 304, 352], [208, 218, 231, 251, 291, 338], [200, 210, 222, 242, 281, 325], [193, 202, 215, 234, 271, 314], [187, 196, 208, 226, 262, 305], [181, 190, 201, 219, 254, 296], [176, 184, 195, 213, 247, 287], [171, 179, 190, 207, 240, 279], [167, 175, 185, 202, 234, 273], [163, 170, 181, 197, 228, 266], [159, 166, 176, 192, 223, 260], [143, 150, 159, 173, 201, 236], [131, 138, 146, 159, 185, 217], [115, 120, 128, 139, 162, 189], [ 74, 77, 82, 89, 104, 122], [ 37, 39, 41, 45, 52, 61], [ 25, 26, 28, 30, 35, 42]])[:,::-1] / 1000. lf = TableDist(alpha, size, crit_lf) print(lf.prob(0.166, 20), 'should be:', 0.15) print('') print(lf.crit2(0.15, 20), 'should be:', 0.166, 'interp2d bad') print(lf.crit(0.15, 20), 'should be:', 0.166, 'two 1d') print(lf.crit3(0.15, 20), 'should be:', 0.166, 'Rbf') print('') print(lf.crit2(0.17, 20), 'should be in:', (.159, .166), 'interp2d bad') print(lf.crit(0.17, 20), 'should be in:', (.159, .166), 'two 1d') print(lf.crit3(0.17, 20), 'should be in:', (.159, .166), 'Rbf') print('') print(lf.crit2(0.19, 20), 'should be in:', (.159, .166), 'interp2d bad') print(lf.crit(0.19, 20), 'should be in:', (.159, .166), 'two 1d') print(lf.crit3(0.19, 20), 'should be in:', (.159, .166), 'Rbf') print('') print(lf.crit2(0.199, 20), 'should be in:', (.159, .166), 'interp2d bad') print(lf.crit(0.199, 20), 'should be in:', (.159, .166), 'two 1d') print(lf.crit3(0.199, 20), 'should be in:', (.159, .166), 'Rbf') #testing print(np.max(np.abs(np.array([lf.prob(c, size[i]) for i in range(len(size)) for c in crit_lf[i]]).reshape(-1,lf.n_alpha) - lf.alpha))) #1.6653345369377348e-16 print(np.max(np.abs(np.array([lf.crit(c, size[i]) for i in range(len(size)) for c in lf.alpha]).reshape(-1,lf.n_alpha) - crit_lf))) #6.9388939039072284e-18) print(np.max(np.abs(np.array([lf.crit3(c, size[i]) for i in range(len(size)) for c in lf.alpha]).reshape(-1,lf.n_alpha) - crit_lf))) #4.0615705243496336e-12) print((np.array([lf.crit3(c, size[i]) for i in range(len(size)) for c in lf.alpha[:-1]*1.1]).reshape(-1,lf.n_alpha-1) < crit_lf[:,:-1]).all()) print((np.array([lf.crit3(c, size[i]) for i in range(len(size)) for c in lf.alpha[:-1]*1.1]).reshape(-1,lf.n_alpha-1) > crit_lf[:,1:]).all()) print((np.array([lf.prob(c*0.9, size[i]) for i in range(len(size)) for c in crit_lf[i,:-1]]).reshape(-1,lf.n_alpha-1) > lf.alpha[:-1]).all()) print((np.array([lf.prob(c*1.1, size[i]) for i in range(len(size)) for c in crit_lf[i,1:]]).reshape(-1,lf.n_alpha-1) < lf.alpha[1:]).all()) #start at size_idx=2 because of non-monotonicity of lf_crit print((np.array([lf.prob(c, size[i]*0.9) for i in range(2,len(size)) for c in crit_lf[i,:-1]]).reshape(-1,lf.n_alpha-1) > lf.alpha[:-1]).all())