Source code for statsmodels.tsa.tests.test_x13

from nose import SkipTest
from numpy.testing import assert_

from statsmodels.tsa.base.datetools import dates_from_range
from statsmodels.tsa.x13 import _find_x12, x13_arima_select_order

x13path = _find_x12()

if x13path is False:
    _have_x13 = False
else:
    _have_x13 = True

[docs]class TestX13(object): @classmethod
[docs] def setupClass(cls): if not _have_x13: raise SkipTest('X13/X12 not available') import pandas as pd from statsmodels.datasets import macrodata, co2 dta = macrodata.load_pandas().data dates = dates_from_range('1959Q1', '2009Q3') index = pd.DatetimeIndex(dates) dta.index = index cls.quarterly_data = dta.dropna() dta = co2.load_pandas().data dta['co2'] = dta.co2.interpolate() cls.monthly_data = dta.resample('M') cls.monthly_start_data = dta.resample('MS')
[docs] def test_x13_arima_select_order(self): res = x13_arima_select_order(self.monthly_data) assert_(isinstance(res.order, tuple)) assert_(isinstance(res.sorder, tuple)) res = x13_arima_select_order(self.monthly_start_data) assert_(isinstance(res.order, tuple)) assert_(isinstance(res.sorder, tuple)) res = x13_arima_select_order(self.monthly_data.co2) assert_(isinstance(res.order, tuple)) assert_(isinstance(res.sorder, tuple)) res = x13_arima_select_order(self.monthly_start_data.co2) assert_(isinstance(res.order, tuple)) assert_(isinstance(res.sorder, tuple)) res = x13_arima_select_order(self.quarterly_data[['realgdp']]) assert_(isinstance(res.order, tuple)) assert_(isinstance(res.sorder, tuple)) res = x13_arima_select_order(self.quarterly_data.realgdp) assert_(isinstance(res.order, tuple)) assert_(isinstance(res.sorder, tuple))