3.2.2.3.13. statsmodels.discrete.discrete_model.L1MultinomialResults¶
-
class
statsmodels.discrete.discrete_model.L1MultinomialResults(model, mlefit)[source]¶ A results class for multinomial data fit by l1 regularization
Parameters: model : A DiscreteModel instance
params : array-like
The parameters of a fitted model.
hessian : array-like
The hessian of the fitted model.
scale : float
A scale parameter for the covariance matrix.
Returns: Attributes
aic : float
Akaike information criterion. -2*(llf - p) where p is the number of regressors including the intercept.
bic : float
Bayesian information criterion. -2*llf + ln(nobs)*p where p is the number of regressors including the intercept.
bse : array
The standard errors of the coefficients.
df_resid : float
See model definition.
df_model : float
See model definition.
fitted_values : array
Linear predictor XB.
llf : float
Value of the loglikelihood
llnull : float
Value of the constant-only loglikelihood
llr : float
Likelihood ratio chi-squared statistic; -2*(llnull - llf)
llr_pvalue : float
The chi-squared probability of getting a log-likelihood ratio statistic greater than llr. llr has a chi-squared distribution with degrees of freedom df_model.
prsquared : float
McFadden’s pseudo-R-squared. 1 - (llf / llnull)
nnz_params : Integer
The number of nonzero parameters in the model. Train with trim_params == True or else numerical error will distort this.
trimmed : Boolean array
trimmed[i] == True if the ith parameter was trimmed from the model.
3.2.2.3.13.1. Methods¶
__init__(model, mlefit) |
|
aic() |
|
bic() |
|
bse() |
|
conf_int([alpha, cols]) |
|
cov_params([r_matrix, column, scale, cov_p, ...]) |
Returns the variance/covariance matrix. |
f_test(r_matrix[, cov_p, scale, invcov]) |
Compute the F-test for a joint linear hypothesis. |
fittedvalues() |
|
get_margeff([at, method, atexog, dummy, count]) |
Get marginal effects of the fitted model. |
initialize(model, params, **kwd) |
|
llf() |
|
llnull() |
|
llr() |
|
llr_pvalue() |
|
load(fname) |
load a pickle, (class method) |
margeff() |
|
normalized_cov_params() |
|
pred_table() |
Returns the J x J prediction table. |
predict([exog, transform]) |
Call self.model.predict with self.params as the first argument. |
prsquared() |
|
pvalues() |
|
remove_data() |
remove data arrays, all nobs arrays from result and model |
resid_misclassified() |
Residuals indicating which observations are misclassified. |
save(fname[, remove_data]) |
save a pickle of this instance |
summary([yname, xname, title, alpha, yname_list]) |
Summarize the Regression Results |
summary2([alpha, float_format]) |
Experimental function to summarize regression results |
t_test(r_matrix[, cov_p, scale, use_t]) |
Compute a t-test for a each linear hypothesis of the form Rb = q |
tvalues() |
Return the t-statistic for a given parameter estimate. |
wald_test(r_matrix[, cov_p, scale, invcov, ...]) |
Compute a Wald-test for a joint linear hypothesis. |