6.9.7.3.7. statsmodels.sandbox.tests.test_gam.GAM

statsmodels.sandbox.tests.test_gam.GAM

alias of Model

6.9.7.3.7.1. Methods

__init__(endog, exog[, smoothers, family])
cont() condition to continue iteration loop
df_resid() degrees of freedom of residuals, ddof is sum of all smoothers df
estimate_scale([Y]) Return Pearson’s X^2 estimate of scale.
fit(Y[, rtol, maxiter])
fit_constrained(constraints[, start_params]) fit the model subject to linear equality constraints
from_formula(formula, data[, subset]) Create a Model from a formula and dataframe.
hessian(params[, scale, observed]) Hessian, second derivative of loglikelihood function
hessian_factor(params[, scale, observed]) Weights for calculating Hessian
information(params[, scale]) Fisher information matrix.
initialize() Initialize a generalized linear model.
loglike(*args) Loglikelihood function.
next()
predict(params[, exog, exposure, offset, linear]) Return predicted values for a design matrix
score(params[, scale]) score, first derivative of the loglikelihood function
score_factor(params[, scale]) weights for score for each observation
score_obs(params[, scale]) score first derivative of the loglikelihood for each observation.
score_test(params_constrained[, ...]) score test for restrictions or for omitted variables

6.9.7.3.7.2. Attributes

endog_names
exog_names