__init__ (endog, exog[, smoothers, family]) |
|
cont () |
condition to continue iteration loop |
df_resid () |
degrees of freedom of residuals, ddof is sum of all smoothers df |
estimate_scale ([Y]) |
Return Pearson’s X^2 estimate of scale. |
fit (Y[, rtol, maxiter]) |
|
fit_constrained (constraints[, start_params]) |
fit the model subject to linear equality constraints |
from_formula (formula, data[, subset]) |
Create a Model from a formula and dataframe. |
hessian (params[, scale, observed]) |
Hessian, second derivative of loglikelihood function |
hessian_factor (params[, scale, observed]) |
Weights for calculating Hessian |
information (params[, scale]) |
Fisher information matrix. |
initialize () |
Initialize a generalized linear model. |
loglike (*args) |
Loglikelihood function. |
next () |
|
predict (params[, exog, exposure, offset, linear]) |
Return predicted values for a design matrix |
score (params[, scale]) |
score, first derivative of the loglikelihood function |
score_factor (params[, scale]) |
weights for score for each observation |
score_obs (params[, scale]) |
score first derivative of the loglikelihood for each observation. |
score_test (params_constrained[, ...]) |
score test for restrictions or for omitted variables |