4.8.1.2.6.1.4. statsmodels.tsa.api.SVAR.fit¶
-
SVAR.
fit
(A_guess=None, B_guess=None, maxlags=None, method='ols', ic=None, trend='c', verbose=False, s_method='mle', solver='bfgs', override=False, maxiter=500, maxfun=500)[source]¶ Fit the SVAR model and solve for structural parameters
Parameters: A_guess : array-like, optional
A vector of starting values for all parameters to be estimated in A.
B_guess : array-like, optional
A vector of starting values for all parameters to be estimated in B.
maxlags : int
Maximum number of lags to check for order selection, defaults to 12 * (nobs/100.)**(1./4), see select_order function
method : {‘ols’}
Estimation method to use
ic : {‘aic’, ‘fpe’, ‘hqic’, ‘bic’, None}
Information criterion to use for VAR order selection. aic : Akaike fpe : Final prediction error hqic : Hannan-Quinn bic : Bayesian a.k.a. Schwarz
verbose : bool, default False
Print order selection output to the screen
trend, str {“c”, “ct”, “ctt”, “nc”}
“c” - add constant “ct” - constant and trend “ctt” - constant, linear and quadratic trend “nc” - co constant, no trend Note that these are prepended to the columns of the dataset.
s_method : {‘mle’}
Estimation method for structural parameters
solver : {‘nm’, ‘newton’, ‘bfgs’, ‘cg’, ‘ncg’, ‘powell’}
Solution method See statsmodels.base for details
override : bool, default False
If True, returns estimates of A and B without checking order or rank condition
maxiter : int, default 500
Number of iterations to perform in solution method
maxfun : int
Number of function evaluations to perform
Returns: est : SVARResults
Notes
Lutkepohl pp. 146-153 Hamilton pp. 324-336