3.4.1.2.5. statsmodels.emplike.api.emplikeAFT

class statsmodels.emplike.api.emplikeAFT(endog, exog, censors)[source]

Class for estimating and conducting inference in an AFT model.

endog: nx1 array
Response variables that are subject to random censoring
exog: nxk array
Matrix of covariates
censors: nx1 array
array with entries 0 or 1. 0 indicates a response was censored.

Notes

The data is immediately sorted in order of increasing endogenous variables

The last observation is assumed to be uncensored which makes estimation and inference possible.

Attributes

nobs: float Number of observations
endog: array Endog attay
exog: array Exogenous variable matrix
censors Censors array but sets the max(endog) to uncensored
nvar: float Number of exogenous variables
uncens_nobs: float Number of uncensored observations
uncens_endog: array Uncensored response variables
uncens_exog: array Exogenous variables of the uncensored observations

Methods

params: Fits model parameters
test_beta: Tests if beta = b0 for any vector b0.
__init__(endog, exog, censors)[source]

3.4.1.2.5.1. Methods

__init__(endog, exog, censors)
fit() Fits an AFT model and returns results instance
predict(params[, endog])