__init__ (*args, **kwds) |
|
calc_cov_params (moms, gradmoms[, weights, ...]) |
calculate covariance of parameter estimates |
compare_j (other) |
overidentification test for comparing two nested gmm estimates |
conf_int ([alpha, cols, method]) |
Returns the confidence interval of the fitted parameters. |
cov_params (**kwds) |
|
f_test (r_matrix[, cov_p, scale, invcov]) |
Compute the F-test for a joint linear hypothesis. |
fittedvalues () |
|
get_bse (**kwds) |
standard error of the parameter estimates with options |
initialize (model, params, **kwd) |
|
jtest () |
overidentification test |
jval () |
|
llf () |
|
load (fname) |
load a pickle, (class method) |
normalized_cov_params () |
|
predict ([exog, transform]) |
Call self.model.predict with self.params as the first argument. |
pvalues () |
|
q () |
|
remove_data () |
remove data arrays, all nobs arrays from result and model |
resid () |
|
save (fname[, remove_data]) |
save a pickle of this instance |
ssr () |
|
summary ([yname, xname, title, alpha]) |
Summarize the Regression Results |
t_test (r_matrix[, cov_p, scale, use_t]) |
Compute a t-test for a each linear hypothesis of the form Rb = q |
tvalues () |
Return the t-statistic for a given parameter estimate. |
wald_test (r_matrix[, cov_p, scale, invcov, ...]) |
Compute a Wald-test for a joint linear hypothesis. |