6.7.7.2.4. statsmodels.sandbox.regression.penalized.TheilGLS¶
-
class
statsmodels.sandbox.regression.penalized.
TheilGLS
(endog, exog, r_matrix, q_matrix=None, sigma_prior=None, sigma=None)[source]¶ GLS with probabilistic restrictions
essentially Bayes with informative prior
note: I’m making up the GLS part, might work only for OLS
6.7.7.2.4.1. Methods¶
__init__ (endog, exog, r_matrix[, q_matrix, ...]) |
|
fit ([lambd]) |
|
fit_minic () |
|
fit_regularized ([method, maxiter, alpha, ...]) |
Return a regularized fit to a linear regression model. |
from_formula (formula, data[, subset]) |
Create a Model from a formula and dataframe. |
hessian (params) |
The Hessian matrix of the model |
information (params) |
Fisher information matrix of model |
initialize () |
|
loglike (params) |
Returns the value of the Gaussian log-likelihood function at params. |
predict (params[, exog]) |
Return linear predicted values from a design matrix. |
score (params) |
Score vector of model. |
whiten (X) |
GLS whiten method. |
6.7.7.2.4.2. Attributes¶
df_model |
The model degree of freedom, defined as the rank of the regressor matrix minus 1 if a constant is included. |
df_resid |
The residual degree of freedom, defined as the number of observations minus the rank of the regressor matrix. |
endog_names |
|
exog_names |