6.7.7.2.4. statsmodels.sandbox.regression.penalized.TheilGLS

class statsmodels.sandbox.regression.penalized.TheilGLS(endog, exog, r_matrix, q_matrix=None, sigma_prior=None, sigma=None)[source]

GLS with probabilistic restrictions

essentially Bayes with informative prior

note: I’m making up the GLS part, might work only for OLS

__init__(endog, exog, r_matrix, q_matrix=None, sigma_prior=None, sigma=None)[source]

6.7.7.2.4.1. Methods

__init__(endog, exog, r_matrix[, q_matrix, ...])
fit([lambd])
fit_minic()
fit_regularized([method, maxiter, alpha, ...]) Return a regularized fit to a linear regression model.
from_formula(formula, data[, subset]) Create a Model from a formula and dataframe.
hessian(params) The Hessian matrix of the model
information(params) Fisher information matrix of model
initialize()
loglike(params) Returns the value of the Gaussian log-likelihood function at params.
predict(params[, exog]) Return linear predicted values from a design matrix.
score(params) Score vector of model.
whiten(X) GLS whiten method.

6.7.7.2.4.2. Attributes

df_model The model degree of freedom, defined as the rank of the regressor matrix minus 1 if a constant is included.
df_resid The residual degree of freedom, defined as the number of observations minus the rank of the regressor matrix.
endog_names
exog_names