4.1.6.1.1. statsmodels.base.l1_solvers_common.do_trim_params¶
-
statsmodels.base.l1_solvers_common.
do_trim_params
(params, k_params, alpha, score, passed, trim_mode, size_trim_tol, auto_trim_tol)[source]¶ Trims (set to zero) params that are zero at the theoretical minimum. Uses heuristics to account for the solver not actually finding the minimum.
In all cases, if alpha[i] == 0, then don’t trim the ith param. In all cases, do nothing with the added variables.
Parameters: params : np.ndarray
model parameters. Not including added variables.
k_params : Int
Number of parameters
alpha : np.ndarray
regularization coefficients
score : Function.
score(params) should return a 1-d vector of derivatives of the unpenalized objective function.
passed : Boolean
True if the QC check passed
trim_mode : ‘auto, ‘size’, or ‘off’
- If not ‘off’, trim (set to zero) parameters that would have been zero
if the solver reached the theoretical minimum.
If ‘auto’, trim params using the Theory above. If ‘size’, trim params if they have very small absolute value
size_trim_tol : float or ‘auto’ (default = ‘auto’)
For use when trim_mode === ‘size’
auto_trim_tol : float
For sue when trim_mode == ‘auto’. Use
qc_tol : float
Print warning and don’t allow auto trim when (ii) in “Theory” (above) is violated by this much.
Returns: params : np.ndarray
Trimmed model parameters
trimmed : np.ndarray of Booleans
trimmed[i] == True if the ith parameter was trimmed.