4.1.6.1.2. statsmodels.base.l1_solvers_common.qc_results¶
-
statsmodels.base.l1_solvers_common.
qc_results
(params, alpha, score, qc_tol, qc_verbose=False)[source]¶ - Theory dictates that one of two conditions holds:
- abs(score[i]) == alpha[i] and params[i] != 0
- abs(score[i]) <= alpha[i] and params[i] == 0
qc_results checks to see that (ii) holds, within qc_tol
qc_results also checks for nan or results of the wrong shape.
Parameters: params : np.ndarray
model parameters. Not including the added variables x_added.
alpha : np.ndarray
regularization coefficients
score : function
Gradient of unregularized objective function
qc_tol : float
Tolerance to hold conditions (i) and (ii) to for QC check.
qc_verbose : Boolean
If true, print out a full QC report upon failure
Returns: passed : Boolean
True if QC check passed
qc_dict : Dictionary
Keys are fprime, alpha, params, passed_array