6.7.10.1.6. statsmodels.sandbox.regression.tools.normgrad¶
-
statsmodels.sandbox.regression.tools.
normgrad
(y, x, params)[source]¶ Jacobian of normal loglikelihood wrt mean mu and variance sigma2
Parameters: y : array, 1d
normally distributed random variable with mean x*beta, and variance sigma2
x : array, 2d
explanatory variables, observation in rows, variables in columns
params: array_like, (nvars + 1)
array of coefficients and variance (beta, sigma2)
Returns: grad : array (nobs, 2)
derivative of loglikelihood for each observation wrt mean in first column, and wrt scale (sigma) in second column
assume params = (beta, sigma2)
Notes
TODO: for heteroscedasticity need sigma to be a 1d array