3.11.11.1.2. statsmodels.stats.lilliefors.ksstat¶
-
statsmodels.stats.lilliefors.
ksstat
(x, cdf, alternative='two_sided', args=())[source]¶ Calculate statistic for the Kolmogorov-Smirnov test for goodness of fit
This calculates the test statistic for a test of the distribution G(x) of an observed variable against a given distribution F(x). Under the null hypothesis the two distributions are identical, G(x)=F(x). The alternative hypothesis can be either ‘two_sided’ (default), ‘less’ or ‘greater’. The KS test is only valid for continuous distributions.
Parameters: x : array_like, 1d
array of observations
cdf : string or callable
string: name of a distribution in scipy.stats callable: function to evaluate cdf
alternative : ‘two_sided’ (default), ‘less’ or ‘greater’
defines the alternative hypothesis (see explanation)
args : tuple, sequence
distribution parameters for call to cdf
Returns: D : float
KS test statistic, either D, D+ or D-
See also
scipy.stats.kstest
Notes
In the one-sided test, the alternative is that the empirical cumulative distribution function of the random variable is “less” or “greater” than the cumulative distribution function F(x) of the hypothesis, G(x)<=F(x), resp. G(x)>=F(x).
In contrast to scipy.stats.kstest, this function only calculates the statistic which can be used either as distance measure or to implement case specific p-values.